щью результатов этой работы. При этом можно использовать и методы, основанные на полученных результатах.

Библиграфический список

- 1. Казаченко, Г.В. Кинематика увода гусеничного хода вследствие неравенства сил трения между гусеницами и несущим основанием. / Г.В. Казаченко. Мн. : Горная механика и машиностроение, 2018. С.
- 2. Опейко, Ф.А. Колесный и гусеничный ход. / Ф.А. Опейко. Мн. : Изд-во Академии сельскохозяйств, наук БССР, 1960. 228 с.
- 3. Давыдик, И.И. Исследование поворота гусеничного хода. Дисс. ... канд. техн. наук. Мн : 1970. 211 с.
- 4. Казаченко, Г.В. Опорно-ходовые устройства горных машин. / Г.В. Казаченко, Г.А. Басалай, Е.В. Щерба: под общ. ред. В.Я. Прушака. – Мн.: Энергопринт, 2016. – 207 с.

УДК 622.014.2: 550.835.41

МОНИТОРИНГ СОДЕРЖАНИЙ СЕРЕБРА ПО СТЕНКАМ ЗАБОЕВ НА ПОДЗЕМНЫХ РУДНИКАХ ТОО «КОРПОРАПИЯ КАЗАХМЫС»

Кан А.Н.¹, Сериков А.Е.¹, Ефименко С.А.¹, Ли Е.С.², Исатаева Ф.М.²

¹ ТОО «Корпорация Казахмыс», Жезказган, Казахстан, ² Карагандинский государственный технический университет г. Караганда, Казахстан,

Статья посвящена аппаратурному обеспечению системы online управления попутной добычей серебра на шахтах ТОО «Корпорация Казахмыс». Базовый метод исследований — рентгенофлуоресцентный. Аппаратура - EDXRF спектрометр РПП—12T с блоком обработки в виде смартфона. Объекты исследований — забои высотой до 8м; руда в навале отбитой горной массы; порошковые пробы руд. Месторождения — Жезказган и Жаман—Айбат. Обеспечено уверенное определение низких (1+ ppm) содержаний серебра.

ТОО «Корпорация Казахмыс», являясь флагманом цветной металлургии Казахстана по производству меди, входит также в число крупнейших производителей серебра в мире (275 т рафинированного серебра в 2015 году). В рудах всех медьсодержащих полиметаллических месторождений, разрабатываемых

ТОО «Корпорация Казахмыс», серебро является одним из основных сопутствующих рудных компонентов. Однако, содержания серебра в рудах большинства разрабатываемых месторождений не велики: на крупнейшем Жезказганском месторождении в среднем 15–18 ppm, а на месторождении Нурказган – всего 3 ppm.

В связи с тем, что роль серебра в экономике ТОО «Корпорация Казахмыс»» постоянно растет, то ранг актуальнейшей приобрела задача организации online мониторинга содержаний серебра в действующих забоях, а также в забоях, подготавливаемых к добычным работам, на шахтах и карьерах Горно—обогатительного комплекса (ГОК) ТОО «Корпорация Казахмыс».

Дополнительную актуальность online мониторингу содержаний серебра придает то обстоятельство, что на стратиформном месторождении медистых песчаников Жезказган установлены линейная, обратная, концентрическая и вертикальная минералогические зональности распределения, как в плане отдельных горизонтов и в разрезе всей рудоносной толщи, так и отдельно взятых залежей, характерные не только для минералов меди, но и для минералов остальных основных и сопутствующих рудных компонентов, включая и серебро. Из-за наличия упомянутых минералогических зональностей очень сложно организовать (без данных online мониторинга) эффективное планирование добычи серебра. В частности, обыденными стали случаи, когда добычной забой выходит за контур балансовых медных руд и выводится из добычи, а затем результаты рентгенофлуоресцентного анализа пунктирно-бороздовых проб, отобранных с данного забоя, показывают, что содержание серебра в забое превышает (порой, намного) средние содержание серебра по рудной залежи, горизонту, рудному полю шахты. То есть, данный забой экономически было бы целесообразно оставить в добыче, постоянно контролируя содержания серебра в нем. Но для реализации такой технологии необходимо иметь эффективный инструмент online мониторинга содержаний серебра. Создание и широкая производственная апробация такого инструмента и явились целью наших исследований.

Задача online мониторинга содержаний меди, свинца и цинка по стенкам горных выработок, в отбитой горной массе, по шламу эксплуатационно-разведочных скважин шахт и карьеров в ГОК давно решена. Для этого сейчас используются энергодисперсионные рентгенофлуоресцентные (EDXRF) носимые спектрометры

РПП–12 (4 элемента: Cu, Pb, Zn, Fe) и РПП–12РИ (12 элементов: Cu, Zn, Pb, Fe, Ba, K, Ca, Ti, Mn, Ni, As, Sr). В обеих модификациях спектрометров в качестве источника возбуждения рентгеновских флуоресценций элементов используются радиоактивные источники закрытого типа плутоний–238. В РПП–12 используется пропорциональный детектор излучений, в РПП–12РИ – высокоскоростной кремниевый дрейфовый детектор (SDD) [1–4].

Для решения задачи online мониторинга содержаний серебра спектрометры РПП–12 и РПП–12РИ не подходят, так как радионуклид плутоний–238 способен возбудить рентгеновские флуоресценции линий К-серий элементов только до ниобия (Z= 41), а серебро имеет Z=47. В спектрометре РПП–12РИ можно использовать радионуклид америций–241, но его основная линия (60 кэВ) слишком далека от К-края поглощения серебра (25,5 кэВ) и требуемой чувствительности измерений по серебру невозможно будет обеспечить. Единственный выход – использование рентгеновских трубок в качестве источника первичного возбуждающего излучения.

Определение содержаний серебра, начиная от 1+ ppm (с учетом руд бедных серебром месторождений) рентгенофлуоресцентным методом — это чрезвычайно сложная научная и производственная задача. На Жезказганском месторождении эта задача осложнена тем, что из—за горизонтального и пологого залегания рудных залежей забои необходимо опробовать вертикальными сечениями высотой до 8 м. Мировой парк носимых EDXRF спектрометров не предлагает ничего (кроме спектрометров ТОО «Аспап Гео»), способного эффективно и безопасно работать на таких высоких объектах.

ТОО «Аспап Гео» (Алма–Ата), — основной поставщик EDXRF спектрометров для корпорации, — разработало по нашему техническому заданию носимый EDXRF спектрометр РПП—12Т, позволяющий проводить мониторинг руд на серебро в навале отбитой горной массы, керне скважин и по стенкам подземных горных выработок (при крутом падении рудных тел) (см. рис. 1А.) Спектрометр оснащен опцией «РФА порошковых проб».

Для обеспечения возможности проведения исследований в условиях высоких забоев шахт Жезказганской производственной площадки базовый вариант спектрометра РПП–12Т был серьезно модернизирован (рис. 1Б): изменена конструкция датчика прибора с целью повышения защиты тонких бериллиевых окон SDD детектора и рентгеновской трубки от воздействия не-

ровной поверхности руды; добавлены: защитное кольцо; ножкидержатели кольца; узел крепления штанг к датчику, комплект из 2-3 метровых штанг (позволяет опробовать забои высотой до 4-5 м; на более высокие забои надо заказывать дополнительные штанги).

А. РПП-12Т (базовый)

Б. РПП-12Т (шахтный)

Рис. 1 – Варианты EDXRF спектрометра РПП-12T

РПП–12Т обеспечивает проведение опробования забоев на 34 элемента: Cu, Zn, Pb, Ag, Cd, As, Se, Ba, Fe, Mo, Mn, Ti, V, Cr, Co, K, Ca, Ni, Ga, Br, Rb, Sr, Zr, Y, In, Pd, Nb, Sn, Sb, Te, Bi, W, Th, U. При этом, площадь обзора поверхности объекта опробования составляет $4-5~{\rm cm}^2$; экспозиция измерения в одной точке наблюдения – от 5 с; пределы обнаружения для большинства рудных элементов находятся в диапазоне от ${\rm n}\cdot 10^{-4}\,\%$ до ${\rm n}\cdot 10^{-3}\,\%$.

У РПП-12Т есть ещё одно важное преимущество: устройством регистрации и обработки является обычный смартфон последнего поколения с операционной системой Android и ударопрочным корпусом. Эта новация обеспечивает высокое быстродействие, гибкость программного обеспечения, возможность голосового управления прибором, а также дополнительные возможности документирования результатов опробования (фотографирование забоя, определение координат, оперативную передачу данных при наличии сети).

У конкурентов используются портативные (карманные) персональные компьютеры, гораздо более громоздкие и менее производительные (сравните: цифровой процессор 533 МГц в спектрометре NITON XL3t GOLDD и четырехъядерный процесор смартфона Samsung Galaxy S5 с тактовой частотой 2,5 Ггц — цифры несопоставимые). Датчик и устройство регистрации и обработки не связаны кабелем (используется bluetooth), чем значительно повышена безопасность процесса опробования забоя — оба оператора независимы друг от друга в передвижении, а оператор на смартфоне всегда находится не у забоя, а под защитой охранного целика.

В РПП-12Т применено мощное программное обеспечение, позволяющее: а) использовать фундаментальные алгоритмы для учёта матричных эффектов (в том числе и для рассеянного излучения), учитывающие изменение геометрических условий измерений при вариациях вещественного состава и плотности анализируемых руд; б) точно определять функцию отклика каждого детектора, а также спектральный состав возбуждающего излучения; в) очищать спектр от двойных и тройных наложений; г) восстанавливать спектр вторичного излучения зависимости относительных интенсивностей характеристических линий от вещественного состава, что обеспечивает точное нахождение истинных интенсивностей аналитических линий элементов.

Для выяснения способности спектрометра РПП-12Т реально решать задачи online мониторинга содержаний серебра в рудах был проведен многоэтапный цикл исследований.

Во-первых, на керне разведочных скважин по следующей программе: а) рентгенофлуоресцентное опробование (РФО) метровых интервалов керна в ящиках в непрерывном режиме (датчик спектрометра РПП-12Т перемещался вдоль интервала керна) при экспозиции измерений 20 сек/м; б) РФО метровых интервалов керна с шагом наблюдений 10см (10 точек/м) и 20см (5 точек/м) с экспозицией измерений 10с и 5с для каждого шага наблюдений; в) контрольное РФО метровых интервалов керна для режимов измерений, указанных в пунктах а) и б). Контрольное РФО (пункт б) проводилось с небольшой сдвижкой. Результаты исследований приведены в таблице 1. В данную таблицу не включены интервалы керна с низкими (< 3 ррт) содержаниями серебра, а также не включены результаты РФО с шагом наблюдения 5 см.

Таблица 1 – Спектрометр РПП–12Т. Результаты РФО керна скважины на серебро (ppm): Осн. – основное РФО, Контр. –

контрольное РФО

	x/a	Режимы РФО керна								
<u>№№</u> инт.		Непрерывный		10 точек/м						
		Tienpe	рывныи	1	0 c	5 c				
		Осн.	Контр.	Осн.	Контр.	Осн.	Контр			
41	3,7	4,2	4,2	3,2	3,7	2,6	3,5			
42	4,7	5,4	4,3	3,5	4,2	4,2	3,6			
40	5,2	5,5	4,9	5,6	4,5	3,8	5,1			
61	8,5	9,2	8,2	7,8	7,0	6,6	7,0			
47	15,4	16,2	15,5	13,9	16,4	12,6	13,5			
55	16,1	17,4	15,8	16,5	17,1	18,0	15,9			
56	20,2	17,7	23,4	15,7	19,0	23,0	21,4			
48	37,0	45,3	43,1	40,4	45,0	41,6	38,9			
50	46,1	44,1	44,5	44,6	45,4	41,3	43,5			
52	17,2	17,1	17,9	16,6	16,0	17,3	18,1			
Средн.	17,41	18,21	18,18	16,78	17,83	17,09	17,05			
σ, %		4,60	4,42	3,62	2,41	1,85	2,10			

Во-вторых, на рудных эталонных штуфах. В таблице 2 приведен отчет о результатах РФО эталонного штуфа № 51 с минимальным содержанием серебра. На штуфе в разных точках выполнялось пять измерений по 10 с каждое. Режим РПП-12T – «Естество».

В-третьих, на грубо измельченных вагонных пробах. Пробы (по 5–6 кг каждая) отобраны с двух составов руды (карьер «Кресто–7») на Жезказганской обогатительной фабрике №1 и измельчены до класса -50 мм. На каждой пробе произведено 35-40 измерений с экспозицией 10 с. Режим измерений — «Естество». Результаты РФО: медь -3,03% и 2,28% (x/a-2,98% и 2,39%), серебро -57,5 ррт и 37,7 ррт (x/a-52,5 ррт и 39,4 ррт), кадмий -4,1 ррт и 6,3 ррт (x/a-4,4 ррт и 5,9 ррт).

В-четвертых, на геологических порошковых проб руд с использованием опции «Анализ проб». Режим измерений — «Порошок». Экспозиция измерений — 30 с. Результаты исследований приведены в таблице 3.

В-пятых, на государственных стандартных образцах руд (ГСО) с использованием опции «Анализ проб». Режим измерений – «Порошок». Экспозиция измерений – 30 с. В таблице 4 приведены результаты исследований (по ГСО–3029 даны также аттестованные содержания серы, оксида кремния и молибдена).

Таблица 2 – Отчет о результатах РФО эталонного штуфа № 51

	Содержания элементов								
Номер точки	Cu	Ag	Zn	Pb	Cd	Fe			
	%	ppm	%	%	ppm	%			
1	0,13	2,3	0,51	0	38,7	1,50			
2	0,14	2,3	0,49	0	38,1	1,52			
3	0,15	1,0	0,49	0	38,2	1,59			
4	0,14	2,4	0,48	0	38,2	1,52			
5	0,14	2,1	0,50	0	35,0	1,47			
Средн.	0,14	2,0	0,49	0	37,6	1,52			
Аттест.	0,15	2,2	0,48	0	37,0	1,54			

Таблица 3 – Результаты РФО порошковых проб

_	Me-	Номер пробы								\overline{C}
Эл	тод	1	2	3	4	5	6	7	8	\overline{C}
Cu	x/a	0,68	0,88	1,43	0,84	3,65	7,68	7,13	3,95	3,28
%	рфа	0,62	0,91	1,34	0,82	3,61	8,03	7,17	4,02	3,32
σ, %		8,8	3,4	6,3	2,4	1,1	4,6	0,6	1,8	1,03
	x/a	2,4	6,1	10,2	15,1	22,0	46,7	94,6	174,4	44,88
Ag	рфа	2,9	5,5	8,5	13,1	21,4	45,6	98,3	176,6	44,97
σ,	, %	20,8	9,8	16,7	13,2	2,7	2,4	3,9	1,3	0,20

Таблица 4 – Результаты РФО ГСО руд

ГСО	Вид	Содержание элементов, % (* – ppm)							
	анализа	Cu	Pb	Zn	Ag*	Cd*			
2887	РПП12Т	0,537	0,0356	0,0121	8,6	6,9			
	x/a	0,55	0,037	0,011	9,3	не атт.			
2888	РПП2Т	1,533	0,1019	0,0243	24,6	7,1			
	x/a	1,55	0,103	0,023	25,9	не атт.			
2889	РПП12Т	3,149	1,8866	0,786	34,9	70,2			
	x/a	3,16	1,90	0,80	35,0	71,0			
2891	РПП12Т	40,31	2,24	2,879	701,5	286,5			
	x/a	40,40	2,25	2,89	707,7	290,0			
3029	РПП12Т	0,30	1,54	68,36(Si)	1,9	89(Mo*)			
	x/a	0,30	1,59	68,09	2,1	86			

Проведенными исследованиями было доказано, что спектрометр РПП–12Т реально обеспечивает проведение эффективного online мониторинга содержаний серебра в керне разведочных скважин, по стенкам горных выработок, в отбитой горной массе, в порошковых пробах руд в диапазоне содержаний серебра от 1+ ррт. Горняки и геологи получили высокоэффектиный инструментСейчас на РФО руд на серебро ежедневно используются 8 спектрометров РПП–12Т.

Библиографический список

- 1. A. Nigmatullin, A. N. Kan, S. A. Yefimenko, V. Onyshchuk, O. Shabatura. Geophysical online monitoring of copper ores for silver's detection at Kazakhmys Corporation LLC // X IIIth International conference "Geoinformatics: Theoretical and Applied Aspects". Geoinformatics 2019. 13-16 May 2019, Kyiv, Ukraine (DOI: 10.3997/2214-4609.201902095).
- 2. Nigmatulin A.M., Abdrakhmanova Z.T., Kan A.N., Yefimenko S.A. Nuclear-geophysical technologies of «on-line» control of the chemical composition of copper-containing polymetallic ores //Resource and resource-saving technologies in minerals mining and processing. Multi-authored monograph. Petrosani. Romania: UNI-VERSITAS Publishing. 2018. 162 179 s.
- 3. Нигматулин А.М., Абдрахманова З.Т., Кан А.Н., Ефименко С.А. Рентгенофлуоресцентный мониторинг содержаний серебра в рудах месторождения Жезказган // Глубинное строение, геодинамика, тепловое поле земли, интерпретация геофизических полей. Десятые научные чтения памяти Ю.П.Булашевича. Материалы конференции. Екатеринбург: ИГФ УрО РАН. 2019. С. 190—194
- 4. Yefimenko S.A., Issatayeva F.M., Zhelayeva N.V. Technologies of «on-line» quality control of ores and their processing products at Kazakhmys corporation LLP // Innovetive development of resource-saving technologies for mining. Multi-Authored monograph. Sofia: Publishing House «St. Ivan Rilski», 2018. P. 245—268.