УДК 621.3

Влияние расположения емкости в электрической цепи при исследовании переходных процессов в простейших цепях с переменным источником питания

Русецкий К.И., Волов Р.А. Научный руководитель – КЛИМКОВИЧ П.И.

В [1] выполнены исследования переходных процессов в электрической цепи, представленной на рисунке 1, с переменным источником питания. В данной работе выполним оценку влияние расположения конденсатора в схеме на протекание переходного процесса. Также рассмотрим влияние расположения ключей в исследуемой схеме и их первоначального состояния.

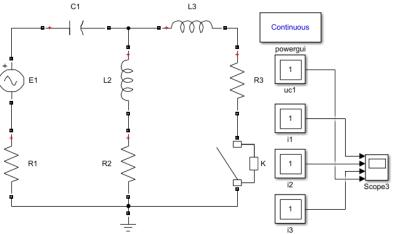


Рисунок 1 – Расчетная схема с постоянным источником питания

На схеме ключ замыкается при t = 0, т. е. в момент включения источника питания. Произведем расчет модели и получим осциллограммы токов по ветвям и напряжения на конденсаторе (рисунок 3). В этом случае конденсатор находится в ветви источника питания.

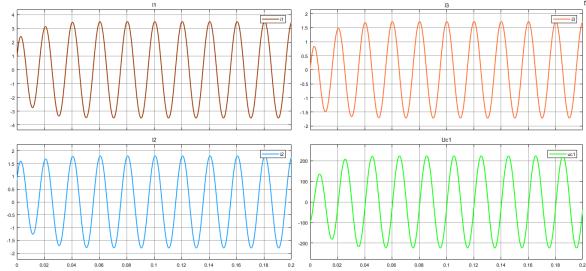


Рисунок 3 — Осциллограммы токов в ветвях реактивных элементов и напряжения на конденсаторе

Произведем изменение в исходной схеме (рисунок 2). Изменим положение конденсатора C_1 и катушки L_2 (рисунок 4). Произведем расчет и получим токи в ветвях реактивных элементов и напряжение в ветви конденсатора, который представлены на рисунке 5. Как видно из осциллограмм, амплитудные значения токов в ветвях и напряжения на конденсаторе уменьшилось, что связано с расположением нашего конденсатора.

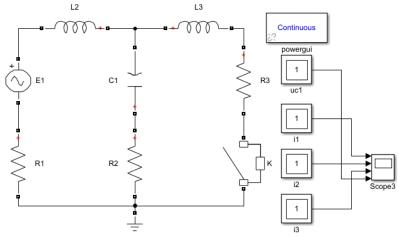


Рисунок 4 — Расчетная схема с измененным расположением элементов

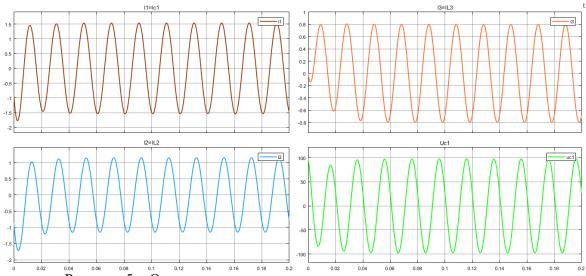


Рисунок 5 – Осциллограммы токов в ветвях реактивных элементов и напряжения на конденсаторе

Преобразуем вариант схемы (рисунок 4) так, чтобы ветвь конденсатор после завершения переходного процесса шунтировалась (рисунок 6). Ключ К замыкаем в момент включения схемы. По осциллограммам, представленным на рисунке 5, определяем примерное время окончания переходного процесса, которое равно 0,04 с. В это же время замыкаем ключ К1 и этим шунтируем ветвь, содержащую емкость.

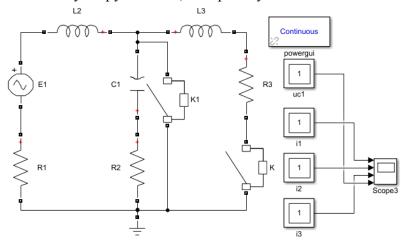


Рисунок 6 – Схема с шунтированием ветви конденсатора

Полученные осциллограммы токов на реактивных элементах и напряжения на конденсаторе представлены на рисунке 7.

Рисунок 7 – Осциллограммы токов в ветвях реактивных элементов и напряжения на конденсаторе

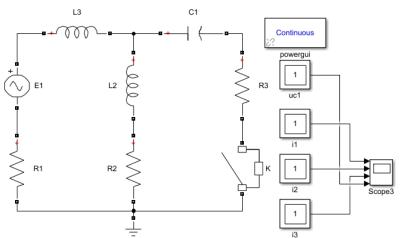


Рисунок 7 – Измененная расчетная схема

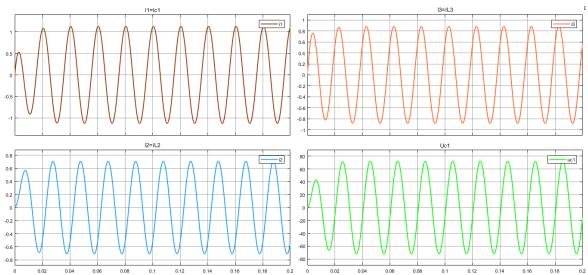


Рисунок 8 – Осциллограммы токов в ветвях катушек и конденсатора, а так же напряжения на конденсаторе

Как видно из осциллограммы ветви тока i_1 конденсатора C_1 при ее шунтирование происходит сам переходный процесс, который затухает по экспоненте. После завершения переходного процесса ток и напряжение на конденсаторе установились в нулевом значении. Так же шунтируется и ветвь с катушкой L_3 , так же происходить экспоненциальное затухание тока в ветви данной катушки.

При выполнении дальнейших исследований внесем в схему, представленную на рисунке 2, поменяв местами конденсатор C_1 и катушку L_3 (рисунок 7). Осциллограммы к данной схеме по токам на реактивных элементах и напряжению на конденсаторе приведены на рисунке 8.

В ходе выполнения исследований выявлено, что протекание переходного процесса в данных схемах при одних и тех же параметрах на элементах происходит за сотые доли секунды без каких-либо резких скачков напряжения или тока. Таким образом, протекание переходного процесса никак не скажется на дальнейшей работе элементах системы.

Литература

1. Русецкий, К. И. Сопоставление результатов расчета переходного процесса, выполненных численными методами на языке высокого уровня, в системе компьютерной алгебры MathCAD и в системе динамического моделирования MatLab Simulimk / К. И. Русецкий; науч. рук. И. В. Новаш // Актуальные проблемы энергетики 2018 [Электронный ресурс]: материалы студенческой научно-технической конференции / сост.: И. Н. Прокопеня, Т. А. Петровская. – Минск: БНТУ, 2018. – С. 427–432.