УДК 621.316.1

Управление реактивной мощностью в децентрализованной гибридной энергосистеме с применением CTATKOM (статический синхронный компенсатор) методами GA, ANN и ANFIS.

Бондарева А.С., Голета Д.А. Научный руководитель – ст. препод. СЕКАЦКИЙ Д.А.

В этой работе исследуется эффективность STATCOM для управления напряжением и реактивной мощностью путем сравнения различных методов настройки, используемых для оценки параметров усиления контроллера STATCOM при наличии высокой вероятностной неопределенности в потреблении входной энергии ветра и нагрузки реактивной мощности. Чтобы контролировать кратковременный отклик напряжения, STATCOM управляет потребностью в реактивной мощности. Обычные способы настройки параметров усиления контроллера STATCOM не работают удовлетворительно в случае случайных помех, и поэтому требуются усовершенствованные контроллеры, такие как генетический алгоритм (Genetic Algorithm – GA), искусственная нейронная сеть (Artificial Neural Network – ANN) и адаптивная система нечеткого вывода (Adaptive Neuro Fuzzy Inference System – ANFIS). Основным вкладом работы является: исследование характеристик STATCOM при наличии высокой вероятностной неопределенности со скачкообразными изменениями входной мощности ветра и нагрузки реактивной мощности, исследования системы во время динамических условий с использованием модели составной нагрузки вместо статической модели нагрузки в системе, сравнение контроля напряжения и реактивной мощности STATCOM с использованием различных методов настройки. Сравнение результатов по всем методам настройки показывает, что усовершенствованные методы настройки способны сохранять оптимальные характеристики в широком диапазоне возмущений с использованием критерия Интеграла квадрата ошибок (ISE).

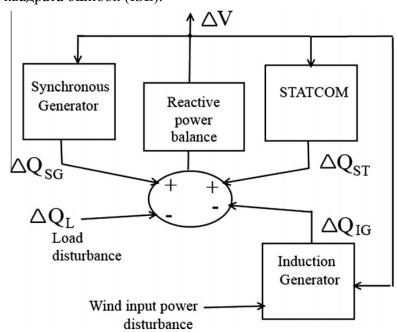


Рисунок 1 – Диаграмма баланса реактивной мощности с компенсацией STATCOM.

Модель MATLAB Simulink была разработана для децентрализованной энергосистемы, показанной на рис. 1. В линеаризованной передаточной функции моделируется и реализуется каждый компонент. Системный контроль анализируется на наличие вероятностных нарушений в обоих входах. Чтобы регулировать отклик напряжения, компенсатор реактивной мощности должен генерировать дополнительную реактивную мощность в системе. Действие STATCOM по выработке реактивной мощности зависит от угла, который контролируется путем настройки коэффициентов усиления КП и КІ. Рис. 2 и 3 дают

графическое представление о диапазоне и оптимальном значении KP и KI, полученных обычным методом

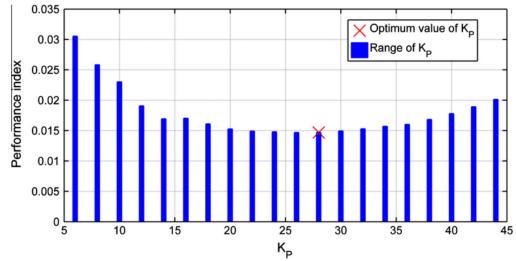


Рисунок 2 – Выбор КП с использованием обычного метода с 10% помех.

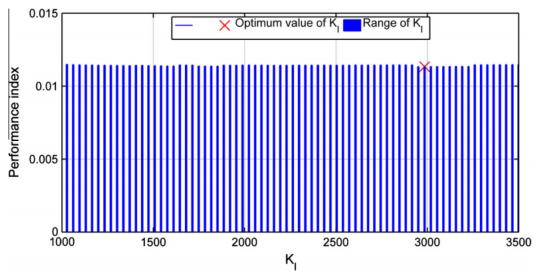


Рисунок 3 – Выбор КИ с использованием обычного метода с 10% возмущений.

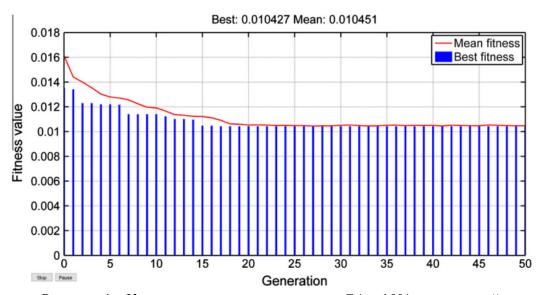


Рисунок 4 – Кривая сходимости для метода GA с 10% возмущений.

В этой работе представлена процедура настройки для констант усиления STATCOM КП и КІ с использованием методов GA, ANN и ANFIS. Важность использования методов предварительной настройки анализируется на наличие вероятностных нарушений в нагрузке и изменение входной мощности. Смешанная нагрузка, включающая статическую и динамическую нагрузки, используется для изучения системы вместо статической модели нагрузки. Константы усиления оцениваются с использованием минимизации индекса производительности, использования критерия ISE во всех четырех изученных методах. Параметры, полученные с помощью традиционного метода, используется для расчета параметров GA, а затем параметры ANN и ANFIS оцениваются с использованием результатов, полученных с помощью традиционного метода. Результаты показывают производительность при использовании каждого метода настройки и преимущества GA, ANN и ANFIS методов при возникновении больших возмущений.

Таблица 1 – Константы усиления контроллера в STATCOM для различных методов настройки.

S. No.	1% disturbances		5% disturbances		10% disturbances	
	K_P	Kı	K_P	Kı	K_P	Kı
Conventional method	28	1611	24	2676	28	2985
GA	4.1	4500	6.4	2320	6.82	2093
ANN	8.9	3145	16.8	2121	15.25	2106
ANFIS	12.1	3160	17.1	2060	15.4	2120

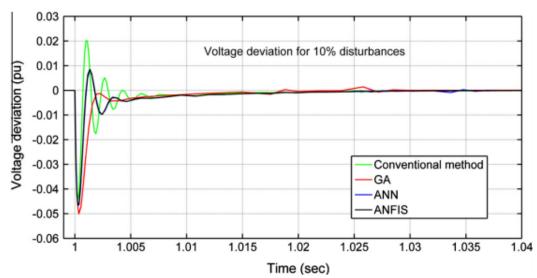


Рисунок 4 – Изменение напряжения в системе при 10% возмущениях

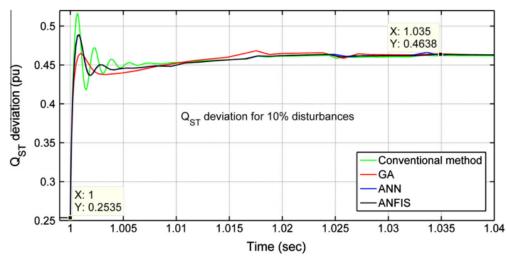


Рисунок 5 – Изменение реактивной мощности STATCOM в системе при 10% возмущениях

Таблица 2 – Генерация реактивной мощности STATCOM с различными помехами.

STATCOM reactive power value	For 1% disturbances (pu)	For 5% disturbances (pu)	For 10% disturbances (pu)
Before disturbances	0.2535	0.2535	0.2535
After disturbances	0.2739	0.3555	0.4638
For mitigating disturbances	0.0204	0.102	0.2103

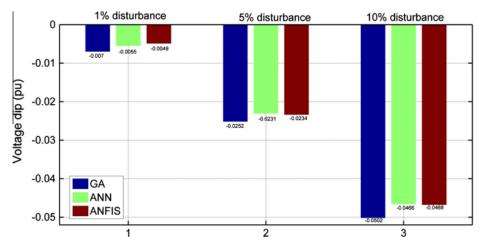


Рисунок 6 — Сравнительное исследование провала напряжения при различных возмущениях

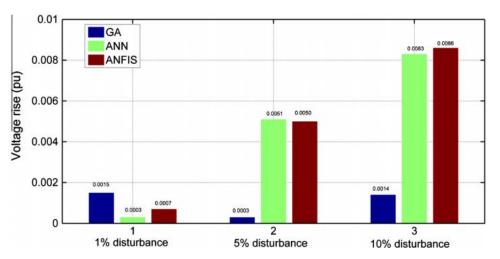


Рисунок 7 — Сравнительное исследование повышения напряжения при различных возмущениях

Рисунок 8 — Сравнительное исследование времени установления напряжения при различных возмущениях.

Литература

- 1. Tao M, Hongxing Yang, Lin Lu. Study on stand-alone power supply options for an isolated community. Electric Power Energy System 2015;65:1–1
- 2. Bansal RC, Bhatti TS, Kothari DP. A novel mathematical modelling of induction generator for reactive power control of isolated hybrid power systems. Int J Model Simul 2004;24(1):1–7