Е.С. ГОЛУБЦОВА, д-р техн. наук, К.О. ГАЛАЕВ, А.С. МЕНЧИЦКАЯ (БНТУ)

ОПТИМИЗАЦИЯ СОСТАВА ПРИСАДОСНОГО МАТЕРИАЛА ДЛЯ СВАРКИ ВЫСОКОПРОЧНОЙ СТАЛИ ВКС-12 (38ХС3Н4К2МФА)

Высокопрочные стали ВКС-9 и ВКС-12 наряду с требуемыми значениями прочности ($\sigma_B = 1900\text{-}2100$ МПа) сохраняют высокие характеристики надежности, малоцикловой усталости, которые достигаются за счет технологии выплавки и оптимального легирования. Эффективность применения этих сталей во многом определяется возможностью изготовления из них сварных конструкций и прочностью получаемых сварных соединений.

Металл шва представляет собой сплав основного и электродного металла (присадочной проволоки). Возможность получения качественного сварного соединения с надлежащими свойствами зависит не только от состава свариваемой стали, но и от состава присадочного материала, технологии и условий сварки, толщины свариваемого металла, конструкции свариваемого объекта и др. Одним из главных факторов, определяющих технологическую прочность и эксплуатационные свойства сварных конструкций, является оптимальный химический состав шва, который достигается в среднелегированных высокопрочных сталях многокомпонентным легированием за счет состава присадочного материала, компенсирующего выгорание специальных элементов основного металла, или легированием элементами, не содержащимися в основном металле, при проведении процесса сварки, что способствует упрочнению феррита и повышению прокаливаемости.

Основными легирующими элементами в присадочных материалах для сварки низко- и среднелегированных сталей является кремний, марганец, хром и никель. Поскольку в состав стали ВКС-12 входит значительное количество никеля (4–5%), кремния (около 3%) и кобальта (2–2,5%), представляет интерес исследование влияния основных легирующих элементов, содержащихся в электродном присадочном металле 32ХГ2СНВМ, на свойства сварного шва

полученного аргонодуговой сваркой стали (ВКС-12) 38ХСЗН4К2МФА. В качестве параметров оптимизации (характеристик свойств) были выбраны: $y_1 = V_{\kappa p}$, (мм/мин) — стойкость против образования горячих трещин; $y_2 = \sigma_{\rm B}$, (МПа) — прочность сварного шва; y_3 (КСU) — ударная вязкость с *U*-образным вырезом, Дж/м²; y_4 (КСV) — ударная вязкость с *V*-образным вырезом, Дж/м². В качестве факторов — x_1 — компонент присадочного материала ($x_1 = -1$, Si; $x_1 = 0$, Ni; $x_1 = +1$, Co) и x_2 - их содержание (0,5; 1,0 и 1,5%).

На первом этапе исследований осуществлен выбор оптимального состава присадочного материала с целью повышения указанных характеристик. Углерод и все основные легирующие элементы отрицательно влияют на свариваемость. Однако активное ухудшение свариваемости сталей связано с предельным определенным и различным по количеству содержанием в них того или иного легирующего элемента. Углерод - одна из наиболее важных примесей, определяющая прочность, вязкость, и особенно свариваемость стали. Он увеличивает склонность стали к образованию горячих и холодных трещин, повышает ее склонность к образованию неравновесных закалочных структур в зоне термического влияния (ЗТВ). Влияние марганца связано с содержанием углерода в стали - чем выше его содержание в стали, тем отрицательнее влияние марганца на свариваемость. Кремний, улучшая свойства основного металла, оказывает некоторое отрицательное влияние на свариваемость. Он упрочняет феррит и способствует неоднородности в распределении углерода. Кроме того, кремний образует устойчивые оксидные пленки, что также отрицательно влияет на свариваемость. Содержание никеля в присадочном материале от 0,1 до 2,1% благоприятно сказывается на повышении прочности металла шва при неизменных значениях ударной вязкости КСО [1]. Введение кобальта в высокопрочные стали увеличивает прочность металла шва, поскольку кобальт уменьшает степень закрепления дислокаций атомами внедрения, повышая их подвижность. Кроме того, кобальт повышает положение точек Ас1 и Мн, способствуя процессу самоотпуска при охлаждении после сварки и снижая склонность к образованию холодных трещин [2].

Для проведения эксперимента с целью разработки математических моделей процесса был выбран двухфакторный план 3×3 [3],

где 3 — три уровня первого фактора (Si, Ni, Co) и три уровня их содержания (0,5; 1,0 и 1,5%). Ошибку воспроизводимости опытов определяли как 5% от среднего значения параметра оптимизации. Во избежание влияния систематических ошибок и источников неоднородностей опытов проводили в случайном порядке. Матрица плана в результате испытаний приведена в табл. 1.

Таблица 1 -- Матрица плана 3×3 и результаты испытаний

Μe	x_1	<i>x</i> ₂	x_1 x_2	x_1^2	x22	$y_1 = V_{\kappa p}$	$y_2 = \sigma_{\rm B}$	y ₃ = KCU	y ₄ = KCV
1	-	_	+	+	+	3,68	1873	680	320
2		0	0	+	0	3,00	1880	480	315
3	_	+		+	+	2,50	1870	280	240
4	0		0	0	+	3,92	1710	800	400
5	0	0	0	0	0	3,70	1800	720	400
6	0	+	0	0	+	3,46	1872	674	340
7	+	_	_	+	+	3,27	1886	600	286
8	+	0	0	+	0	4,00	1880	590	286
9	+	+	+	+	+_	5,00	1875	540	257

В этой таблице x_1 и x_2 – кодированные уровни факторов (-1; 0; +1), (для удобства единицы опущены); (1Y), (2Y), (12Y) и т.д. – алгебранческие суммы по каждому столбцу, определяемые как сумма произведений столбца 0 Y_j (j – номер показателя, т.е. j = 1, 2, 3, 4) на сголбец соответствующего фактора. Например, для $y_1 = V_{\rm kp}$ (0 Y_j = = 3,68 + 3,00 + 2,50 + 3,92 + 3,70 + 3,46 + 3,27 + 4,00 + 5,00 = 32,53; (1Y)₁ = -3,68 - 3,00 - 2,50 + 3,27 + 4,00 + 5,00 = 3,09 и т. д. Так делаем по каждому параметру оптимизации.

На следующем этапе рассчитываем коэффициенты уравнений по формулам:

$$b_0 = A_0(0Y) - A_{01}(OY) - A_{02}(0Y); (1)$$

$$b_1 = A_1(1Y); b_2 = A_2(2Y); b_{12} = A_{12}(12Y);$$
 (2)

$$b_{11} = A_{11}(11Y) - A_{01}(0Y); b_{22} = A_{22}(22Y) - A_{02}(0Y).$$
 (3)

Значения коэффициентов A_0 , A_{01} , A_{02} ,..., A_{11} , A_{22} , берем из таблиц [3]. Для плана 3×3 эти коэффициенты соответственно будут равны: $A_0=0,55556$; $A_{01}=A_{02}=0,33333$; $A_1=A_2=0,16667$; $A_{12}=0,25$; $A_{11}=A_{22}=0,50$. Например, для $y_1=V_{\rm KP}$:

$$b_0 = 0,55556 \times 32,53 - 0,33333(21,45+21,83) = 3.64;$$

$$b_1 = 0,16667 \times 3,09 = 0,52;$$

$$b_2 = 0,16667 \times 0,09 = 0,015; b_{12} = 0,25 \times 2,92 = 0,73;$$

$$b_{11} = 0,5 \times 21,45 - 0,33333 \times 32,53 = -0,12; b_{22} = 0,5 \times 21,83 - 0,33333 \times 32,53 = 0,75.$$

Для проверки статистической значимости коэффициентов нужно рассчитать среднюю квадратическую ошибку этих коэффициентов по формулам:

$$S_{b_0} = \sqrt{A_0} \cdot S_3; \tag{4}$$

$$S_{b_i} = \sqrt{A_i} \cdot S_{\mathfrak{d}}; \tag{5}$$

$$S_{b_{ij}} = \sqrt{A_{ij}} \cdot S_{\mathfrak{I}}; \tag{6}$$

$$S_{b_{ii}} = \sqrt{A_{ii}} \cdot S_{\mathfrak{d}}. \tag{7}$$

Например, для
$$y_1=V_{\rm kp}$$
 $S_{b_0}=\sqrt{0,5556}\cdot 0,18=0,134$;
$$S_{b_1}=S_{b_2}=\sqrt{0,16667}\cdot 0,12=0,07344 \ ; \ S_{b_{12}}=\sqrt{0,25}\cdot 0,18=0,09 \ ;$$

$$S_{b_{11}}=S_{b_{22}}=\sqrt{0,50}\cdot 0,13=0,127 \ .$$

Затем определяем доверительный интервал Δb_i , для всех коэффициентов по формулам:

$$\Delta b_0 = \pm t \cdot S_{b_0} \,; \tag{8}$$

$$\Delta b_1 = \pm t \cdot S_{b1}; \tag{9}$$

$$\Delta b_{12} = \pm t \cdot S_{b_{12}}; \tag{10}$$

$$\Delta b_{11} = \Delta b_{22} = \pm t \cdot S_{b_{ii}} \,. \tag{11}$$

Для $y_1 = V_{\text{кр}} \Delta b_0 = 2,262 \times 0,134 = 0,303$; $\Delta b_1 = \Delta b_2 = 2,262 \times 0,07344 = 0,166$; $\Delta b_{12} = 2,262 \times 0,09 = 0,204$; $\Delta b_{11} = \Delta b_{22} = 2,262 \times 0,127 = 0,287$.

Значение критерия Стьюдента t берется из таблицы [4] при заданном уровне доверия α и степенях свободы f (в данном случае f=9). Таким образом, коэффициенты b_2 , b_{11} и b_{22} оказались незначимыми, т.к. их абсолютные значения меньше соответствующих Δb_2 , Δb_{11} .

Заключительным этапом расчетов является проверка адекватности полученных уравнений:

$$y_1 = V_{k0} = 3,64 + 0,52x_1 + 0,73x_1x_2;$$
 (12)

$$y_2 = \sigma_b = 1798;$$
 (13)

$$y_3 = KCU = 732 + 48x_1 - 97x_2 + 85 x_1x_2 - 203 x_1^2;$$
 (14)

$$y_4 = KCV = 398 - 28x_2 - 96x_1^2 - 87x_2^2$$
. (15)

Для этого находим расчетные значения y_1 , y_2 , y_3 , y_4 . Подставляя в каждой строке кодированные уровни факторов, находим разности между расчетными значениями \hat{Y}_i и экспериментальными $(\Delta y = y_u - y_3)$, возводим эту разность в квадрат (Δy_u^2) и сумми-

руем их, т.е. $\sum_{u=1}^{N} \Delta y_u$, где u – номер строки плана, N – число опытов.

Определяем так называемую дисперсию адекватности $S^2_{
m an}$ по формуле

$$S_{\rm a,l}^2 = \frac{\sum_{u=1}^{N} \Delta y_u^2}{N - m} , \qquad (16)$$

где m — число значимых коэффициентов уровня, включая b_0 .

Адекватность модели может быть проверена по критерию Φ и-шера F по формуле:

$$F_p = \frac{S_{\rm a,n}^2}{S_{\nu}^2},$$

где $S_{\rm ag}^2$ — дисперсия параметра оптимизации ($S_{\rm v}^2=S_{\rm s}^2$).

Если $F_p < F_{\kappa p}$ (табличного) при заданном α и числе степеней свободы $f_1 = N - m$ (для числителя) и $f_2 = N - 1$ (для знаменателя). Табличные значения $F_{\kappa p}$ берутся из таблиц [4].

Например, для $y_3 = KCU = 732 + 48x_1 - 97x_2 + 85x_1x_2 - 203 x_1^2$:

$$S_{\text{aut}}^2 = \frac{4072}{9-5} = 1018;$$
 $F_{\text{p}} = \frac{1018}{30^2} = 1,13 < F_{\text{kp}} = 3,8$

(при $\alpha=0.05$; $f_1=4$, $f_2=8$), т. е. модель адекватна. Все остальные модели (12), (13), (15) также адекватны, т. к. для (12): $F_{\rm p}=1,2 < F_{\rm kp}=3,44$; для (13): $F_{\rm p}=0,745 < F_{\rm kp}=1$; для (15): $F_{\rm p}=0.91 < F_{\rm kp}=1$.

Заключительным этапом является интерпретация полученных адекватных моделей. Например, анализ уравнения (12) показывает, что наибольшее влияние на $V_{\rm кр}$ оказывает вид присадки (x_1) , влияние присадки (x_2) проявляется только во взаимодействии x_1x_2 , мак-

симальная величина $V_{\rm xp}$ = 5,0 мм/мин будет при x_1 =+1 и x_2 =+1, т. е. при использовании в качестве присадки кобальта, содержание которого должно быть равно 1.5%.

Вторая часть работы посвящена исследованию влияния присадок Si, Ni, Co на свойства сварных швов с помощью двухфакторного плана второго порядка 3×3 , где 3 — три вида присадки (Si,Ni,Co) и три уровня содержания этих присадок (0,5;1,0 и 1,5%), а также обобщенного (комплексного) параметра оптимизации D.

В результате этих исследований были получены показатели четырех свойств ($V_{\rm kp}$, мм/мин – стойкость против образования горячих трещин; $\sigma_{\rm s}$, МПа – предел прочности шва; КСU, Дж/м² – ударная вязкость с U-образным вырезом и КСV, Дж/м² – ударная вязкость с V-образным вырезом). В таблице 2 приведены условия проведения опытов и результаты испытаний.

В этой таблице x_1 и x_2 — кодированные уровни факторов (виды присадок и уровни содержания этих присадок); D — обобщенный показатель, который был определен позже, после получения данных о $V_{\rm kp}$, $\sigma_{\rm B}$, KCU, KCV; N — число опытов. Первый фактор (x_1) кодировался так: $x_1 = -1$, присадки Si по трем уровням 0,5; 1,0 и 1,5% соответственно; $x_1 = 0$, присадки Ni; $x_1 = +1$, присадки Co.

Второй фактор (x_2 — кодирование уровней содержания присадок) проводили по формуле:

$$x_i = \frac{\overline{x}_i - 0.5(\overline{x}_{i\max} + \overline{x}_{i\min})}{0.5(\overline{x}_{i\max} - \overline{x}_{i\min})}$$

где x_2 — кодированный уровень; x_i , $\overline{x}_{i\max}$ и $\overline{x}_{i\min}$ — натуральные значения текущего, максимального и минимального уровней i-го фактора.

Ввиду некоторой противоречивости полученных данных (например, в опыте № 9 при $x_1 = +1$ (Co) и $x_2 = +1$ (1,5%) высокое значение $V_{xy} = 5$, $\sigma_B = 1875$, но сравнительно низкие значения KCU и KCV, по сравнению с другими присадками, или в опыте № 3 при $x_1 = -1$ (Si) и $x_2 = +1$ (1,5%) получили числовое несоответствие. Значение σ_1

после присадки $x_2 = 0$ (1%) возросло, а затем после $x_2 = +1$ (1,5 %) уменьшилось, и стало ниже значения при $x_2 = -1$ (0,5%), при этом остальные параметры последовательно уменьшаются), было принято решение рассчитать обобщенный (комплексный) параметр оптимизации D [3]. Этот показатель рассчитывается по формуле:

$$D = \sqrt[n]{d_1 \cdot d_2 \cdot \dots \cdot d_n} , \qquad (17)$$

где $d_1, d_2,...,d_n$ — частные функции желательности для i-го показателя (i=1,2,...,n), определяемых, в свою очередь, по формуле:

$$d_i = e^{-e^{-y_i'}} = \exp[-\exp(-y_i')], \tag{18}$$

где y'_i – кодированное значение i–го показателя, e – основание натурального логарифма. Для нахождения значений y'_i , d_i , и D_n (n – номер строки матрицы) строим шкалу желательности для частных показателей.

26 Таблица 2 – Матрица плана 3×3 и результаты эксперимента

N	x_1	x ₂	x_1x_2	x_1^2	x ₂ ²	$y_1 = V_{kp}$	$y_2=\sigma_{\rm B}$	y ₃ =KCU	y ₄ =KCV	D
1	_	-	+	+	+	3,68	1873	680	320	0,686
2		0	0	+	0	3,00	1880	480	315	0,496
3	-	+	_	+	+	2,50	1870	280	240	0,220
4	0	-	0	0	+	3,92	1710	800	400	0,594
5	0	0	0	0	0	3,70	1800	720	400	0,714
6	0	+	0	0	+	3,46	1872	674	340	0,529
7	+	-	_	+	+	3,27	1886	600	286	0,531
8	+	0	0	+	0	4,00	1880	590	286	0,643
9	+	+	+	+	+	5,00	1875	540	257	0,614

Таблица 3 – Шкала желательности

d_i	y_i'	$y_1 = V_{\text{exp}}$	$y_2 = \sigma_B$	y ₃ =KCU	$y_4 = KCV$
1,00-0,80	3,00	5,00	1900	800	400
0,80-0,63	1,50	4,50	1850	670	360
0,63-0,37	0,85	4,00	1800	540	320
0,37-0,20	0,00	3,50	1750	410	280
0,20-0,00	-0,5	3,00	1700	280	240

 d_i = (1,00–0,80) соответствует очень хорошему результату; d_i = (0,80–0,63) соответствует хорошему результату; d_i = (0,63–0,37) – удовлетворительному; d_i = (0,37–0,20) – плохому и d_i = (0,20–0,00) – очень плохому результату.

Вносим в шкалу желаемые уровни показателей. Например, для $V_{\rm кp}$ это 5,0; 4,5; 4,0; 3,5 и 3,0. Так как конкретные значения показателей таблицы 2 лишь частично совпадает со значениями таблицы 3, нужно для данных таблицы 2 определить y_i' и d_i . Для этого строим график функции желательности, где по оси ординат откладываем значения d_i , а по оси абсцисс — y_i' (рис.1). Кривую строим, пользуясь шкалой желательности. При $y_i' = -0.5$, $d_i = 0.2$; при $y_i' = 0.0$, $d_i = 0.37$; при $y_i' = 0.85$, $d_i = 0.63$; при $y_i' = 1.5$ $d_i = 0.8$; при $y_i' = 3.0$, $d_i \approx 1.0$ (точнее 0,951). Затем проводим четыре прямые параллельно оси 0 y_i' и на них наносим данные таблицы 2. Пользуясь этим графиком, находим значения y_i' для данных таблицы 2.

Например, для $y_1 = V_{\text{кр}} = 3,68$, $y_i' = 0,306$, т. к. 3,68 лежит на отрезке 3,5–4.0, составляя пропорцию, получим

$$\begin{vmatrix} 0.85 - 0.50 \\ y' - 0.18 \end{vmatrix}$$
 откуда $y'_i = (0.85 \cdot 0.18)/0.50 = 0.306$.

Найдя таким образом значения y'_i для всех данных таблицы 1, по формуле (17) определим величину di, а по формуле (1) – величину D. Результаты этих расчетов приведены в таблице 4.

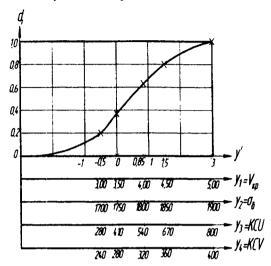


Рисунок 1 – График функции желательности

Значение D также вносим в таблице 2. Из таблиц 2 и 4 видно, что наибольшее значение D=0,714 получено в опыте N 5, т. е. при $x_1=0$ (Ni) $x_2=0$ (1,0%). Действительно, в этом случае $y_1=V_{\rm sp}=3,7$ мм/мин, $y_2=\sigma_{\rm B}=1800$ МПа, $y_3={\rm KCU}=720$ Дж/м², $y_4={\rm KCV}=400$ Дж/м² (хороший результат).

В опыте N 1 D = 0,686 (также хороший результат) x_1 = -1(Si) x_2 = -1(0,5%). y_1 = $V_{\rm kp}$ = 3,68 мм/мин, y_2 = $\sigma_{\rm B}$ =1873 МПа, y_3 = -1 КСU = 680 Дж/м², y_4 = KCV = 320 Дж/м²

В опыте № 8 D=0.643 $x_1=+1$ (Co) $x_2=0$ (1.0%), $y_1=V_{sp}=4$ мм/мин, $y_2=\sigma_B=1880$ МПа, $y_3=\text{KCU}=590$ Дж/м², $y_4=\text{KCV}=280$ Дж/м².

Пользуясь таблицей 2., можно найти уравнение регрессии для Д:

$$y_D = D = 0.672 + 0.064 x_1 - 0.075 x_2 + 0.137 x_1 x_2 - 0.081 x_1^2 - 0.089 x_2^2$$
 (19)

Максимальное расчетное значение $y_D = 0,672$ будет при $x_1 = 0$ и $y_2 = 0$, т. е. по условиям опыта N 5. Преимуществом показателя D перед другими является то, что он не «пропустит» слабое значение одного (или нескольких) частных показателей y_i . Подставляя в уравнение (19) кодированные уровни x_1 , получим уравнения для каждой присадки:

при
$$x_1 = -1$$
 (Si)

$$y_D = 0.527 - 0.212 x_2 - 0.089 x_2^2,$$
 (20)

с точкой перегиба $x_{2e} = -\frac{0,212}{2 \cdot 0,089} = -1,19 (0,4\% \text{ Si}),$ где

 $y_D = 0,653;$

при $x_1 = 0$ (Ni)

$$y_D = 0.672 - 0.075 x_2 - 0.089 x_2^2,$$
 (21)

с точкой перегиба $x_{2e} = -\frac{0,075}{2 \cdot 0,089} = -0,42$ (0,79% Ni), где

 $y_D = 0,688;$

при
$$x_1 = +1$$
(Co)
 $y_D = 0,655 + 0,062 x_2 - 0,089 x_2^2$, (22)

с точкой перегиба $x_{2e} = -\frac{0,062}{2 \cdot 0,089} = 0,348$ (0,67% Co), где $y_D = 0,666$.

Таблица 4 – Значения y_i , y_i' , d_i , D_n

N	<i>y</i> 1	νί	d_1	у2	<i>y</i> ₂ '	d ₂	<i>y</i> ₃	<i>y</i> ′ ₃	d_3	У4	y' ₄	d ₄	D
1	3,68	0,306	0,479	1873	2,19	0,894	680	1,615	0,820	320	0,850	0,630	0,686
2	3,00	-0,50	0,200	1880	2,40	0,913	480	0,458	0,531	315	0,744	0,622	0,496
3	2,50	-1,00	0,066	1870	2,10	0,885	280	-0,50	0,200	240	-0,50	0,200	0,220
4	3,92	0,714	0,613	1710	-0,4	0,225	800	3,00	0,951	400	3,00	0,951	0,594
5	3,70	0,34	0,491	1800	0,85	0,630	720	2,077	0,882	400	3,00	0,951	0,714
6	3,46	-0,04	0,353	1872	2,16	0,891	674	1,546	0,808	340	1,175	0,309	0,529
7	3,27	-0,23	0,284	1886	2,58	0,927	600	1,15	0,729	286	0,128	0,415	0,531
8	4,00	0,85	0,630	1880	2,40	0,913	590	1,10	0,717	286	0,128	0,415	0,643
9	5,00	3,00	0,951	1875	2,25	0,900	540	0,85	0,630	257	-0,288	0,264	0,614

Таким образом, присадки Ni (0,79%) обеспечивают более высокий уровень комплексных свойств шва по сравнению с Si и Co.

Литература

- 1. Присадочный материал для сварки высокопрочных конструкционных легированных сталей / Л. Л. Старова, В. Г. Ковальчук, М. Т. Борисов [и др.] // Сварочное производство. 2005. № 9 (850). С. 3—6.
- 2. Мусияченко, В. Ф. Влияние кобальта на структуру и свойства высокопрочного металла шва / В. Ф. Мусияченко, Л. И. Миходуй, В. Г. Васильев // Автоматическая сварка. 1984. № 7.— С. 45—48.
- **3.** Адлер, Ю. П. Планирование эксперимента при поиске оптимальных условий / Ю. П. Адлер, Е. В. Маркова, Ю. В. Грановский. М.: Статистика, 1976. 279 с.
- **4. Вознесенский, В. А.** Статистические методы планирования эксперимента в технико-экономических исследованиях / В. А. Вознесенский. М.: Статистика, 1974. 192 с.

УДК 621.746

И.В. РАФАЛЬСКИЙ, канд. техн. наук, А.В. АРАБЕЙ, С.В. КИСЕЛЕВ, П.С. ГУРЧЕНКО, д-р техн. наук (БНТУ)

ИДЕНТИФИКАЦИЯ И ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЙ ТЕМПЕРАТУРНО-ВРЕМЕННЫХ ПАРАМЕТРОВ ФАЗОВЫХ ПЕРЕХОДОВ ЛИТЕЙНЫХ СПЛАВОВ В СИСТЕМАХ ТЕРМИЧЕСКОГО ЭКСПРЕСС-АНАЛИЗА

Термический анализ расплавов является высокочувствительным методом измерения теплофизических характеристик вещества и широко используется как в научных целях, так и для решения практических задач. В научных целях этот метод применяется при