Бериллий и его сплавы

Студент гр. 104215 Дубаневич Е.Р. Научный руководитель – Протасевич Г.Ф. Белорусский национальный технический университет г. Минск

Целью настоящей работы являлось изучение бериллия и его сплавов

Бериллий обладает малой плотностью, высоким модулем упругости и прочностью, размерной стабильностью, теплостойкостью , хорошей коррозионной стойкостью в ряде агрессивных сред. Этот металл - в полтора раза легче алюминия и в то же время прочнее специальных сталей. Особенно важно, что бериллий и многие его сплавы, не утрачивают полезных свойств при температуре 700...800°C.

Бериллий - металл второй группы Периодической системы элементов Д.И. Менделеева. Порядковый номер бериллия 4, атомная масса 9,01, температура плавления 1284 °C. Бериллий может существовать в двух полиморфных модификациях. До 1250 °C имеет гексагональную плотноупакованную решетку, выше - решетку объемно-центрированного куба. Плотность бериллия 1845 кг/м³. Комплекс физических, химических и механических свойств позволяет отнести бериллий к наиболее ценным конструкционным материалам.

Для производства компактного бериллия в виде заготовок применяют методы порошковой металлургии.

По сравнению с другими легкими материалами бериллий обладает уникальным сочетанием физических и механических свойств. По удельной прочности и жесткости он превосходит все другие металлы (Таблица 1).

Бериллий отличается высокой электро- и теплопроводностью, приближающейся к теплопроводности алюминия, а по удельной теплоемкости [$\approx 2500~\text{Дж/(кг}~\times~\text{град)}$] превосходит все остальные металлы. Бериллий стоек к коррозии. Подобно алюминию, при взаимодействии бериллия с воздухом на поверхности его образуется тонкая оксидная пленка, защищающая металл от действия кислорода даже при высокой температуре.

Таблица 1 - Удельная прочность и жесткость материалов

Материал	σ _в , МПа	γ , (kg/m ³) · 10^{-3}	$\sigma_{\rm B}/(\gamma g)$, km	Е/(γg), км
Магниевый сплав МА10	430	1,8	24	2,3
Алюминиевый сплав В95	700	2,9	21	2,4
Титановый сплав ВТ6	1500	4,5	22	2,6
Сталь 03Н18К9М5Т	1750	7,8	23	2,6
Бериллий	680	1,8	38	16,1

Бериллий имеет высокие ядерные характеристики — самое низкое среди металлов эффективное поперечное сечение захвата тепловых нейтронов и самое высокое поперечное сечение их рассеяния.

Недостатками бериллия является высокая стоимость, а также низкая хладостойкость. Ударная вязкость технического бериллия ниже 5 Дж/см². Несмотря на эти недостатки, уникальная совокупность технических преимуществ позволяет относить бериллий к числу выдающихся аэрокосмических материалов.

Серьезный недостаток бериллия, заключающийся в низкой ударной вязкости и хладноломкости, может быть преодолен использованием сплавов с алюминием.

Широкое распространение получили сплавы меди с 2–5 % бериллия, так называемые бериллиевые бронзы.

В настоящее время разработан ряд литейных бериллиевых сплавов (Таблица 2).

Таблица 2 - Химические составы (%, остальное — Ве) литейных бериллиевых сплавов

	Массовая доля элементов, %									
Сплав	Al	Al Ni	Mg Cu	Cu	Zr, Sc, Y, Gd, P3M	Примеси, не более				
						Si	Fe	Mn	Ti	O ₂
ЛБС-1	24–34	3–6	_	_	0,06–0,21	0,1	0,15	0,1	0,05	0,1
ЛБС-2	36–24	3,5–4,5	0,6–0,8	_	0,03-0,12	0,1	0,15	0,1	0,05	0,1
ЛБС-3	30–34	_	0,1–0,6	6–8	0,05-0,1	0,1	0,15	_	_	0,1

Приведенные сплавы имеют очень хорошие механические характеристики (Таблица 3).

Таблица 3 - Механические свойства литейных бериллиевых сплавов

Свойство	ЛБС-1	ЛБС-2	ЛБС-3
σ₅, МПа	220–250	250–320	270–280
σ _{0,2} , ΜΠa	180–220	220–270	250–270
δ, %	2–3	2–3	1,1–1,3
ψ, %	2–3	2–3,5	_
КСU, МДж/м²	0,025-0,035	0,033–0,040	0,025-0,045
Е, ГПа	200	200	200