

# Министерство образования Республики Беларусь

# БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра инженерной математики

# ВЫСШАЯ МАТЕМАТИКА

Руководство к решению задач для студентов механико-технологического факультета

Часть 4

**Минск БНТУ** 2010

# Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра инженерной математики

# ВЫСШАЯ МАТЕМАТИКА

Руководство к решению задач для студентов механико-технологического факультета

В 7 частях

Часть 4

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Под редакцией В.А. Нифагина

Минск БНТУ 2010 Издание выходит с 2008 года

#### Составители:

Е.А. Глинская, И.В. Прусова, О.Г. Вишневская, А.А. Литовко

#### Рецензент

#### В.В. Веременюк

Данное издание содержит теоретические сведения, подробные решения типовых примеров и задач, задания для самостоятельной работы по разделам функций нескольких переменных и неопределенного интеграла.

Часть 3 «Элементы математического анализа» (авторы: Е.А. Глинская, И.В. Прусова, О.В. Дубровина, А.Н. Мелешко; под ред. В.А. Нифагина) вышла в БНТУ в 2009 г.

#### 1. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

#### 1.1. Область определения функции. Линии и поверхности уровня

Пусть задано множество D упорядоченных пар чисел (x, y). Если каждой паре действительных чисел (x, y) принадлежащей множеству D, по определенному правилу f ставится в соответствие одно и только одно число  $z \in E \leq R$ , то говорят, что на множестве D задана функция f (или отображение) двух переменных, определенная на множестве D со значениями в R и записывают z = f(x, y) или  $f : D \rightarrow R$ .

Множество D = D(f) называется областью определения функции. Множество E значений, принимаемых Z в области определения, называется областью ее значений.

Т.к. всякое уравнение Z = f(x, y) определяет, вообще говоря, в пространстве, в котором введена декартовая система координат OxyZ, некоторую поверхность, то под графиком функции двух переменных будем понимать поверхность, образованную множеством точек M(x, y, Z) пространства, координаты которых удовлетворяют уравнению Z = f(x, y).

Геометрически областью определения функции может быть вся плоскость Oxy или ее часть, ограниченная линиями, которые могут принадлежать или не принадлежать этой области. В первом случае область D называют замкнутой и обозначают  $\overline{D}$ , во втором — открытой. Значение функции z = f(x, y) в точке  $M_0(x_0, y_0)$  обозначают  $Z_0 = f(x_0, y_0)$  или  $Z_0 = f(M_0)$  и называют значением функции.

Определение функции двух переменных легко обобщить на случай трех и большего числа переменных  $U = f(X_1, X_2, ..., X_n)$ .

Наглядное представление о функции двух или трех переменных может дать картина ее линий или поверхностей уровня.

Линии уровня функции Z = f(x, y) называется множество точек (x, y) плоскости Oxy, в которых функция / сохраняет постоянное значение, т.е. удовлетворяющих равенству f(x, y) = C, где C - постоянная.

Поверхностью уровня функции U = f(x, y, z) называется множество точек пространства, удовлетворяющих равенству f(x, y, z) = C, где C - постоянная.

#### Примеры

1. Найти частное значение функции  $z = x^3 - 5xy + y^2$  при x = 3 и y = -2.

**Решение.** Подставляя заданные значения аргументов, получим:  $Z(3,-2)=3^3-5\cdot 3\cdot (-2)+(-2)^2=61$ .

2. Найти область определения функции  $Z = \sqrt{\partial^2 - \chi^2 - y^2}$ .

**Решение**. Переменная *Z*принимает действительные значения при условии  $a^2 - x^2 - y^2 \ge 0$  или  $x^2 + y^2 \le a^2$ . Следовательно, областью определения данной функции является круг радиуса *a*с центром в начале координат, включая граничную окружность. Поверхность, соответствующая заданной функции, есть верхняя половина сферы  $x^2 + y^2 + z^2 = a^2$ .

3. Найти область определения функции  $U = \ln(2Z^2 - 6x^2 - 3y^2 - 6)$ .

**Решение**. Данная функция зависит от трех переменных и принимает действительные значения при  $2Z^2 - 6X^2 - 3y^2 - 6 > 0$ , т.е.  $x^2/1 + y^2/2 - Z^2/3 < -1$ . Областью определения функции является часть пространства, заключенная внутри полостей двуполостного гиперболоида.

4. Найти линии уровня функции  $Z = X^2 + y^2$ .

5. Найти поверхности уровня функции  $U = x^2 + z^2 - y^2$ .

Решение. Уравнение семейства поверхностей уровня имеет вид  $x^2 + z^2 - y^2 = C$ . Если C = 0, то получает конус  $x^2 + z^2 - y^2 = 0$ ; если C > 0, то гиперболоидов; если C < 0, то однополостных двуполостных гиперболоидов.

# 1.2. Задачи для самостоятельной работы

Найти области определения функций:

1. 
$$Z = \sqrt{X^2 + y^2 - 1}$$
;

1. 
$$z = \sqrt{x^2 + y^2 - 1}$$
; 2.  $z = 1/\sqrt{1 - x^2 - y^2}$ ; 3.  $z = \arcsin(x + y)$ ;

3. 
$$Z = \arcsin(X + Y)$$
;

4. 
$$Z = \sqrt{\cos(x^2 + y^2)}$$
; 5.  $Z = \ln(-x + y)$ ; 6.  $Z = y + \sqrt{x}$ ;

5. 
$$Z = \ln(-X + y)$$
;

6. 
$$Z = y + \sqrt{x}$$

7. 
$$Z = \sqrt{XY}$$
;

8. 
$$Z = \sqrt{x^2 + y^2 - 1} + \ln(25 - x^2 - y^2)$$
;

9. 
$$U = \arcsin(Z/\sqrt{X^2 + y^2})$$

9. 
$$U = \arcsin(z/\sqrt{x^2 + y^2});$$
 10.  $U = 1/\ln(1 - x^2 - y^2 - z^2);$  11.  $U = \sqrt{x + y + z};$ 

Найти линии уровня функций:

12. 
$$z = 2x + y$$
;

13. 
$$z = x/y$$
;

14. 
$$Z = \ln \sqrt{y/x}$$
;

15. 
$$Z = \sqrt{X/y}$$
;

16. 
$$Z = e^{xy}$$
;

16. 
$$Z = e^{xy}$$
; 17.  $Z = 1/(4x^2 + y^2)$ ;

Найти поверхности уровня функций:

18. 
$$U = X + V + 3Z$$
:

19. 
$$U = X^2 + V^2 + Z^2$$
;

18. 
$$U = X + y + 3Z$$
; 19.  $U = X^2 + y^2 + Z^2$ ; 20.  $U = X^2 - y^2 - Z^2$ ;

21. 
$$U = X^2 + y^2 - Z$$
;

21. 
$$U = X^2 + y^2 - Z$$
; 22.  $U = 1/(X^2 + 4y^2 + 9Z^2)$ ; 23.  $U = Z/\sqrt{X^2 + y^2}$ ;

#### Ответы

- 1.  $x^2 + y^2 \ge 1$  часть плоскости вне единичного круга с центром в начале координат.
  - 2. Часть плоскости внутри круга  $x^2 + y^2 < 1$ .
  - 3. Полоса между параллельными прямыми  $x + y \le 1$  и  $x + y \ge -1$ .
  - 4. Концентрические кольца  $0 \le x^2 + y^2 \le \pi/2$ ,  $3\pi/2 \le x^2 + y^2 \ge 5\pi/2$ ,....
  - 5. y > x полуплоскость, лежащая выше биссектрисы y = x.
  - 6. Полуплоскость  $X \ge 0$ .

- 7. Совокупность точек, лежащих на координатных осях и внутри первой и третьей четвертей.
- 8. Совокупность точек, расположенных на окружности с центром в начале координат и с радиусом R=1 и внутренние точки кольца, ограниченного этой окружностью и окружностью с центром в начале координат и радиусом R=5.
  - 9. Часть пространства вне конуса  $\chi^2 + y^2 z^2 = 0$ .
- 10. Часть пространства внутри шара  $x^2 + y^2 + z^2 < 1$ , за исключением начала координат.
  - 11. Часть пространства над плоскостью X + Y + Z = 0, включая эту плоскость.
  - 12. Семейство параллельных прямых 2x + y = C.
  - 13. Семейство прямых y = Cx.
  - 14. Семейство прямых  $y = e^{2C} \cdot X$ , или  $y = C_1 X(C_1 > 0)$ .
  - 15. Семейство прямых y = Cx.
- 16. Семейство равнобочных гипербол xy = C (при  $C \neq 0$ ); совокупность координатных осей Ox и Oy (при C = 0).
  - 17. Семейство эллипсов  $\frac{\chi^2}{1/4C} + \frac{y^2}{1/C} = 1$  (при C > 0).
  - 18. Семейство плоскостей x + y + 3z = C.
  - 19. Семейство сфер  $x^2 + y^2 + z^2 = C$ .
- 20. Семейство двуполостных гиперболоидов  $x^2 y^2 z^2 = C$  (при C > 0); семейство однополостных гиперболоидов  $x^2 y^2 z^2 = C$  (при C < 0); конус  $x^2 y^2 z^2 = 0$  (при C = 0).

21. 
$$x^2 + y^2 - z = C$$
.

22. 
$$x^2 + 4y^2 + 9z^2 = C$$
.

23. 
$$Z^2 = C^2(X^2 + y^2)$$
.

#### 1.3. Предел и непрерывность функции двух переменных

Множество всех точек M(x, y) плоскости, координаты которых удовлетворяют неравенству  $0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$ , называется проколотой  $\delta$  окрестностью точки  $M_0(x_0, y_0)$  и обозначаются  $\dot{O}_{\delta}(M_0)$ .

Пусть функция Z = f(x, y) определена в некоторой окрестности точки  $M_0(x_0, y_0)$ , кроме, быть может, самой этой точки. Число  $Z_0$  называется пределом функции Z = f(x, y) (по Коши) при  $x \to x_0$  и  $y \to x_0$  (или  $M(x, y) \to M_0(x_0, y_0)$ ), если для любого  $\varepsilon > 0$  существует  $\delta > 0$  такое, что для всех  $x \ne x_0$  и  $y \ne y_0$  и удовлетворяющих неравенству  $\sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$  выполняется неравенство  $|f(x, y) - Z_0| < \varepsilon$ :

$$Z_0 = \lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) \Leftrightarrow \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall M(x, y) \in \mathcal{O}_{\delta}(M_0) \Rightarrow f(M) \in \mathcal{O}_{\varepsilon}(Z_0).$$

Из определения следует, что если предел существует, то он не зависит от пути, по которому M стремиться к  $M_0$  .

Повторными пределами функции z = f(x, y) (или  $f \in M$ ) в точке  $M_0(x_0, y_0)$  называются следующие пределы  $\lim_{x \to x_0} \lim_{y \to y_0} f \in M$  и  $\lim_{y \to y_0} \lim_{x \to x_0} f \in M$ 

Функции z = f(x, y) (или f(M)) называется непрерывной в точке  $M_0(x_0, y_0)$ , если она:

- 1) определена в этой точке и некоторой ее окрестности,
- 2) имеет предел  $\lim_{M\to M_0} f(M)$ ,
- 3) этот предел равен значению функции Z в точке  $M_0$ , т.е.  $\lim_{\substack{M \to M_0 \\ V \to V_0}} f(M) = f(M_0) \text{ или } \lim_{\substack{X \to X_0 \\ V \to V_0}} f(X, y) = f(X_0, y_0).$

Если в точке  $M_0$  одно из указанных условий не выполняется , то она является точкой разрыва функции Z = f(X, y). Точки разрыва могут образовывать линии и поверхности разрыва.

Функция непрерывная в каждой точке некоторой области, называется непрерывной в этой области.

Другое, равносильное определение непрерывности функции: функция Z = f(x, y) называется непрерывной в точке  $M_0(x_0, y_0)$ , если в этой точке бесконечно малым приращениям аргументов  $\Delta x = x - x_0$  и  $\Delta y = y - y_0$  соответствует бесконечно малое приращение  $\Delta z = f(x, y) - f(x_0, y_0)$  функции z.

#### Примеры

1. Найти предел 
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{x^2-y^2}{x^2+y^2}$$
.

**Решение.** Будем приближаться в 0(0;0) по прямой y = kx, где k — некоторое

число. Тогда 
$$\lim_{\substack{x\to 0\\y\to 0}}\frac{x^2-y^y}{x^2+y^2}=\lim_{\substack{x\to 0}}\frac{x^2-k^2\,x^2}{x^2+k^2\,x^2}=\lim_{\substack{x\to 0}}\frac{1-k^2}{1+k^2}=\frac{1-k^2}{1+k^2}$$
. Функция  $z=\frac{x^2-y^2}{x^2+y^y}$ 

в точке 0(0;0) предела не имеет, т.к. при различных значениях k предел функции не одинаков (функция имеет различные предельные значения).

2. Вычислить 
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{xy}{3-\sqrt{xy+9}}$$
.

Решение. Преобразовав выражение под знаком предела, получим:

$$\lim_{\substack{x \to 0 \\ y \to y}} \frac{xy}{3 - \sqrt{xy + 9}} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{(3 - \sqrt{xy + 9})(3 + \sqrt{xy + 9})} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - (xy + 9)} = \lim_{\substack{x \to 0$$

3. Найти повторные пределы функции  $f(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$  в точке 0(0;0).

**Решение.** Имеем 
$$\lim_{y\to 0} \lim_{x\to 0} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{y\to 0} \frac{-y^2}{y^2} = -1$$
.

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{x \to 0} \frac{x^2}{x^2} = 1.$$

Таким образом, повторные пределы не всегда равны между собой.

4. Показать, что функция  $z = x^2 - 2xy$  непрерывна на всей плоскости Oxy.

Решение. Определим приращение функции

$$\Delta z = (x + \Delta x)^2 - 2(x + \Delta x)(y + \Delta y) - (x^2 - 2xy) = x^2 + 2x\Delta x + (\Delta x)^2 - 2xy - 2x\Delta y - 2y\Delta x - 2\Delta x\Delta y - x^2 + 2xy = 2x\Delta x + (\Delta x)^2 - 2x\Delta y - 2y\Delta x - 2\Delta x\Delta y.$$

т. к.  $\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \Delta Z = 0$  в любой точке M(x,y), то на всей плоскости Oxy функция

непрерывна.

5. Исследовать на непрерывность функцию  $Z = \frac{xy+2}{x^2-y}$ .

**Решение**. Заданная функция *Z* терпит разрыв в точках, где  $y = x^2$ . Следовательно, функция *Z* непрерывна в любой точке плоскости *Оху*, исключая точки, расположенные на параболе  $y = x^2$ .

6. Исследовать на непрерывность функцию  $Z = 1/(9x^2 - 4y^2)$ .

**Решение.** Для функции *z* точки разрыва образуют множество точек плоскости Oxy, определяемое равенством  $9x^2 - 4y^2 = 0$ , т.е. точки прямых  $y = \pm 3x/2$ .

# 1.4. Задачи для самостоятельного решения

Найти предел функции.

$$1. \lim_{\stackrel{X \to -1}{y \to 0}} \sin(Xy)/y;$$

3. 
$$\lim_{\substack{x \to 0 \\ y \to 0}} (x^2 y^2) / (x^4 + y^4);$$

2. 
$$\lim_{\substack{x \to 1 \\ y \to 2}} (x^3 - y)/(x^2 + y^2);$$

4. 
$$\lim_{\substack{x \to 0 \\ y \to 0}} 1/(x^4 + y^4)$$
;

5. 
$$\lim_{\substack{X \to 1 \\ y \to 0}} \sqrt{(X-1)^2 + 4y^2} / (X-1^2 + y^2);$$

6. 
$$\lim_{\substack{x \to 0 \\ y \to 3}} \operatorname{tg}(xy)/x;$$

Найти точки разрыва функции:

7. 
$$Z=1/((x-1)^2+(y+2)^2)$$
;

8. 
$$Z=1/\sqrt{(x+3)^2+(y-4)^2}$$
;

9. 
$$Z = (x^2 + y^2 - 2x + 3y)/(x + y)$$
;

10. 
$$Z = \ln |1 - (x+1)^2 - (y-2)^2|$$
;

11. 
$$U=1/(x^2+y^2-z)$$
;

12. 
$$U = \sin(1/xyz)$$
;

13. 
$$U=1/(x^2-y^2+z^2)$$
;

14. 
$$u=1/(R^2-(x-a)^2-(y-b)^2-(z-c)^2);$$

15. Непрерывна ли функция 
$$f(x, y) = (x^2 - y^2)/(x^2 + y^2)$$
:

- а) в круге радиусом R = 2 с центром в начале координат?
- б) в круге радиусом R = 2 с центром в точке C(-3; 4)?
- в) в круге радиусом R = 5 с центром в точке C(2; 3)?

# 16. Непрерывна ли функция $f(x, y) = (xy)/(x^2 + y^2)$ в области:

- а) содержащей начало координат?
- б) не содержащей начало координат?

#### Ответы

- 1. -1. 2. -1/5. 3. не существует.
- $4. + \infty$ .  $5. + \infty$ . 6. 3
- 7.  $\mathcal{N}(1,-2)$ . 8.  $\mathcal{N}(-3;4)$ .
- 9. Точки, лежащие на прямой x + y = 0.
- 10. Точки, лежащие на окружности  $(x+1)^2 + (y-2)^2 = 1$ .
- 11. Точки, лежащие на параболоиде вращения  $x^2 + y^2 = z$ .
- 12. Точки, лежащие на координатных плоскостях.
- 13. Точки, лежащие на конусе  $x^2 y^2 + z^2 = 0$ .
- 14. Точки, лежащие на сфере радиусом R с центром в точке S(a,b,c).
- 15. a) разрывна в точке 0(0;0);

- б) непрерывна;
- в) разрывна в точке 0(0;0).
- 16. a) разрывна в точке 0(0;0);
  - б) непрерывна.

# 1.5. Дифференцирование и дифференциал. Производная по направлению. Градиент. Производная в направлении градиента

#### 1°. Частные производные

Частным приращением функции  $Z = f \{ \{1, ..., X_n \} \}$  соответствующим приращению  $\Delta X_i$  переменной  $X_i$  называется разность

$$\Delta_i Z = f \langle \langle \langle 1, ..., X_i \rangle \rangle + \Delta X_i, ..., X_n \rangle = f \langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$$

В случае если функция Z – функция двух переменных Z = f(x, y) то

$$\Delta_x Z = f \langle (+\Delta x, y) - f \langle (x, y) \rangle$$

 $\Delta_{x}Z$  - частное приращение функции Z = f(x, y) по переменной X, а

$$\Delta_{y} Z = f(x, y + \Delta y) - f(x, y)$$

 $\Delta_y Z$  - частное приращение функции  $Z = f \langle \langle \langle \rangle \rangle$  по переменной y.

Частной производной функции  $Z = f(x_1, ..., x_n)$  по переменной  $X_i$  называется предел отношения частного приращения функции  $Z = f(x_1, ..., x_n)$  по переменной  $X_i$  к приращению самого аргумента функции  $X_i$ , при условии, что последнее приращение стремится к нулю, то есть

$$\lim_{\Delta X_i \to 0} \frac{f(X_1, ..., X_i + \Delta X_i, ..., X_n) - f(X_1, ..., X_i, ..., X_n)}{\Delta X_i}$$

Частные производные обозначаются одним из следующих образов:  $Z'_{x_i}$ ,  $\frac{\partial Z}{\partial x}$ ,  $f'_{x_i}$ ,

$$\frac{\partial f}{\partial X_i}$$
.

Процесс нахождения частных производных функции  $Z = f(x_1, ..., X_n)$  называется дифференцированием функции.

В случае если функция 
$$Z - функция двух переменных  $Z = f (x, y)$  то 
$$Z_X = \frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f (x + \Delta x, y) - f (x, y)}{\Delta x}$$$$

$$Z_{y} = \frac{\partial f}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y},$$

где  $Z_X$  и  $Z_Y$  - *частные производные* функции Z = f(X, Y) по переменным X и Y соответственно.

Частные производные функций нескольких переменных вычисляются по тем же самым правилам, что и производные функций одной переменной, но при этом надо считать, что все переменные, кроме переменной, по которой берется производная, являются константами.

#### 2°. Частные производные высших порядков

Частная производная от частной производной функции  $Z = f(x_1, ..., x_n)$  называется частной производной второго порядка функции  $Z = f(x_1, ..., x_n)$  Вводятся следующие обозначения:

$$Z''_{x_j x_i} = \frac{\partial^2 Z}{\partial x_j \partial x_i} = (Z'_{i_j})'_{x_j} = \frac{\partial}{\partial x_j} \left( \frac{\partial Z}{\partial x_i} \right),$$

$$Z''_{x_i x_i} = \frac{\partial^2 Z}{\partial x_i^2} = (Z'_{x_j})'_{x_i} = \frac{\partial}{\partial x_i} \left( \frac{\partial Z}{\partial x_i} \right).$$

Аналогично определяются частные производные *S*-ого порядка функции  $Z = f(x_1, ..., x_n)$ 

В случае если частная производная высшего порядка функции  $Z = f(X_1, ..., X_n)$  получена дифференцированием функции  $Z = f(X_1, ..., X_n)$  по разным переменным, то она называется *смещанной*.

Если при нахождении смешанной производной *S*-ого порядка функции  $Z = f(x_1, ..., x_n)$  все промежуточные производные являлись непрерывными в точке  $(x_1, ..., x_n)$  то ее вычисление не зависит от того в каком порядке брались

производные по ее переменным. В этом случае, запись  $\frac{\partial^s Z}{\partial x_1^{k_1} \dots \partial x_n^{k_n}}$ , где

 $k_1 + ... + k_n = S$ , обозначает, что S-ая смешанная производная функции  $Z = f(x_1, ..., x_n)$  получена  $k_1$  раз дифференцированием по переменной  $k_2$ , ...,  $k_n$  раз дифференцированием по переменной  $k_2$ , ...,  $k_n$  раз дифференцированием по переменной  $k_2$ , ...,  $k_n$  раз дифференцирования не имеет значения.

В случае функции двух переменных  $Z = f \langle \langle \rangle$  имеем

$$Z''_{xx} = \frac{\partial^2 Z}{\partial x^2} = (Z'_x)'_x = \frac{\partial}{\partial x} \left( \frac{\partial Z}{\partial x} \right),$$

$$Z''_{yx} = \frac{\partial^2 Z}{\partial y \partial x} = (Z'_x)'_y = \frac{\partial}{\partial y} \left(\frac{\partial Z}{\partial x}\right),$$

$$Z''_{xy} = \frac{\partial^2 Z}{\partial x \partial y} = (Z'_y)'_x = \frac{\partial}{\partial x} \left(\frac{\partial Z}{\partial y}\right),$$

$$Z''_{yy} = \frac{\partial^2 Z}{\partial y^2} = (Z'_y)'_y = \frac{\partial}{\partial y} \left(\frac{\partial Z}{\partial y}\right).$$

#### 3°. Дифференциал функции

Полным приращением функции  $Z = f(\{1, ..., X_n\})$  при приращениях ее аргументов  $X_1, ..., X_n$  на  $\Delta X_1, ..., \Delta X_n$  соответственно называется разность

$$\Delta z = f \langle \langle \langle \rangle \rangle + \Delta x_1, \dots, x_n + \Delta x_n \rangle = f \langle \langle \langle \rangle \rangle + \Delta x_n \rangle$$

Если полное приращение функции  $Z = f(x_1, ..., x_n)$  можно представить в виде  $\Delta Z = A \Delta X_1 + ... + A_n \Delta X_n + O(X_n)$ 

где  $A_1 = A_1 + A_2 + A_3 + A_4 + A_5 + A_6 +$ 

$$dz = A_1 \Delta X_1 + \dots + A_n \Delta X_n. \tag{1.1}$$

По определению, дифференциалом независимых переменных называются сами их приращения, то есть  $dX_1 = \Delta X_1$ , ...,  $dX_n = \Delta X_n$ , поэтому формулу (1.1) можно переписать в следующем виде

$$dZ = A_1 dX_1 + \dots + A_n dX_n. \tag{1.2}$$

Достаточным условием дифференцируемости функции  $Z = f \{ \{0, ..., X_n \} \}$  является непрерывность всех ее частных производных, в этом случае имеет место следующие равенства  $A = A \{ \{0, ..., X_n \} \} = \frac{\partial Z}{\partial X_1}, ..., A_n = A_n \{ \{0, ..., X_n \} \} = \frac{\partial Z}{\partial X_n},$  а значит формула (1.2) примет вид

$$dZ = \frac{\partial Z}{\partial X_1} dX_1 + \dots + \frac{\partial Z}{\partial X_D} dX_D. \tag{1.3}$$

В случае непрерывности частных производных функции Z = f(x, y) ее дифференциал равен

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy.$$

Дифференциал функции нескольких переменных, как и для функции одной переменной, используется для приближенного вычисления значений функций. А именно, для дифференцируемой функции при маленьких приращениях аргументов  $\Delta X_1$ , ...,  $\Delta X_n$  приращение функции приближенно равно ее дифференциалу, то есть

$$\Delta f \langle \{1, ..., X_n \} \rangle df \langle \{1, ..., X_n \} \rangle$$

Если расписать подробно, получим

$$f \blacktriangleleft_1 + \Delta x_1, \dots, x_n + \Delta x_n \geqslant f \blacktriangleleft_1, \dots, x_n \Rightarrow f'_{x_1} \blacktriangleleft_1, \dots, x_n \Rightarrow x_1 + \dots + f'_{x_n} \blacktriangleleft_1, \dots, x_n \Rightarrow x_n.$$

$$f + \Delta x, y + \Delta y \ge f + y + f' + y \ge x + f' + y \ge y_1.$$
 (1.4)

# 4°. Дифференциал высшего порядка

Дифференциалом 2 порядка функции  $Z = f(x_1, ..., x_n)$  называется дифференциал от дифференциала первого порядка функции  $Z = f(x_1, ..., x_n)$  считая дифференциалы независимых переменных константами. Дифференциалом S-го порядка функции  $Z = f(x_1, ..., x_n)$  называется дифференциал от дифференциала S-1-го порядка функции  $Z = f(x_1, ..., x_n)$  считая дифференциалы независимых переменных константами и обозначается

В случае, если функции  $Z = f (x_1, ..., x_n)$  обладает всеми непрерывными частными производными до S-го порядка включительно, то символически можно записать

$$\mathbf{d}^{s} Z = \left(\frac{\partial}{\partial x_{1}} \mathbf{d} x_{1} + \ldots + \frac{\partial}{\partial x_{n}} \mathbf{d} x_{n}\right)^{s} Z.$$

Данная формула раскрывается по формуле бинома Ньютона.

S-й дифференциал независимой переменной X, вместо записи  $(X)^S$ , обозначается  $dX^S$ .

 $d^s Z$ .

Для функции двух переменных Z = f(x, y) при выполнении соответствующих условий, второй дифференциал равен

$$d^{2} Z = \frac{\partial^{2} Z}{\partial x^{2}} dx^{2} + 2 \frac{\partial^{2} Z}{\partial y \partial x} dx dy + \frac{\partial^{2} Z}{\partial y^{2}} dy^{2}.$$

Для функции трех переменных U = f(x, y, z) при тех же условиях, имеем

$$d^{2} Z = \frac{\partial^{2} Z}{\partial x^{2}} dx^{2} + 2 \frac{\partial^{2} Z}{\partial y \partial x} dx dy + 2 \frac{\partial^{2} Z}{\partial z \partial x} dx dz + \frac{\partial^{2} Z}{\partial y^{2}} dy^{2} + 2 \frac{\partial^{2} Z}{\partial z \partial y} dy dz + \frac{\partial^{2} Z}{\partial z^{2}} dz^{2}. \quad (1.5)$$

#### 5°. Дифференцирование сложных функций

Пусть функция  $z = f(x_1, ..., x_n)$  дифференцируема в точке  $(x_1, ..., x_n)$  а функции  $x_1 = g_1(x_1, ..., t_m)$  ...,  $x_n = g_n(x_1, ..., t_m)$  имеют частную производную по  $t_j$  в точке  $(x_1, ..., t_m)$  тогда сложная функция  $x_1 = f(x_1, ..., t_m)$  и верна следующая формула

$$\frac{\partial Z}{\partial t_j} = \frac{\partial Z}{\partial x_1} \frac{\partial x_1}{\partial t_j} + \dots + \frac{\partial Z}{\partial x_n} \frac{\partial x_n}{\partial t_j}.$$

Частными, являются следующие случаи:

1) Пусть функция  $Z = f(x_1, ..., x_n)$  дифференцируема в точке  $(x_1, ..., x_n)$  а функции  $(x_1 = g_1)$  ...,  $(x_n = g_n)$  Дифференцируемы в точке  $(x_n, ..., x_n)$  дифференцируема в точке  $(x_n$ 

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial x_1} \frac{\partial x_1}{\mathrm{d}t} + \dots + \frac{\partial z}{\partial x_n} \frac{\partial x_n}{\mathrm{d}t}.$$

2) Пусть функция Z = f Дифференцируема в точке X, а функция X = g Дифференцируема в точке X, а функция X = g Дифференцируема в точке X, а функция X = g Димеет частную производную по X, в точке X, а функция X = g Димеет частную производную по X, в точке X, а функция X = g Димеет частную производную по X, в точке X, а функция X = g Димеет частную производную по X, в точке X, а функция X = g Димеет частную производную по X, в точке X, а функция X = g Димеет частную производную по X, в точке X, а функция X = g Димеет частную производную по X, в точке X, а функция X = g Димеет частную производную по X, в точке X, а функция X = g Димеет частную производную по X, в точке X, а функция X = g Димеет частную производную по X, в точке X, а функция X = g Димеет частную производную по X, в точке X, а функция X = g Димеет частную производную по X, в точке X, а функция X = g Димеет частную производную по X, в точке X, а функция X = g Димеет частную производную по X, в точке X, а функция X, а функция X = g Димеет частную производную по X, в точке X, а функция X, а функция X = g Димеет частную производную по X, в точке X, а функция X,

$$\frac{\partial Z}{\partial t_i} = \frac{\mathrm{d}Z}{\mathrm{d}x} \frac{\partial x}{\partial t_i}.$$

Для функции двух переменных вышесказанное имеет следующую форму. Пусть функция Z = f(V, V) дифференцируема в точке (V, V) а функции (V, V) и (V, V) имеют частную производную по (V, V) тогда сложная функция (V, V) имеет частную производную по (V, V) имеет частную производную по (V, V) в точке (V, V) и верны следующие формулы

$$\frac{\partial Z}{\partial u} = \frac{\partial Z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial Z}{\partial y} \frac{\partial y}{\partial u};$$
$$\frac{\partial Z}{\partial v} = \frac{\partial Z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial Z}{\partial y} \frac{\partial y}{\partial v}.$$

Частным является следующий случай:

Пусть функция z = f (, y) дифференцируема в точке (, y) а функции x = g ( и y = h ( дифференцируемы в точке t, тогда сложная функция z = f ( y) дифференцируема в точке t и имеет место следующая формула

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial z}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}.$$
 (1.6)

В случае, если y = h то

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}x}.$$

Аналогичная формула имеет место, если переменная X является функцией от переменной y.

#### 6°. Дифференцирование неявно заданных функций

Пусть дифференцируемая функция  $y = f(x_1, ..., x_n)$  задана неявно  $F(x_1, ..., x_n, y) = 0$ , тогда

$$y'_{x_i} = -\frac{F'_{x_i}}{F'_{y}}. (1.7)$$

Если функция одной переменной y = f (С) задается неявно F (С), y = 0, то формула (1.7) имеет вид

$$y' = -\frac{F_x'}{F_y'}. (1.8)$$

Для функции Z = Z(x, y) заданной неявно F(x, y, z) = 0 имеем

$$Z'_{x} = -\frac{F'_{x}}{F'_{z}} \quad \text{if} \quad Z'_{y} = -\frac{F'_{y}}{F'_{z}}.$$
 (1.9)

# 7°. Производная по направлению, градиент и производная по направлению градиента функции трех переменных

Производной функции U = f(x, y, z) по направлению  $\vec{a} = (x, a_y; a_z)$  называется предел

$$\frac{\partial u}{\partial \vec{a}} = \lim_{t \to 0} \frac{f \left( + a_x t, y + a_y t, z + a_z t \right) f \left( x, y, z \right)}{\sqrt{a_x^2 + a_y^2 + a_z^2} t}.$$

В случае если функция U = f(x, y, z) дифференцируема, то

$$\frac{\partial u}{\partial \vec{a}} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma,$$

где вектор  $\vec{b} = \{\cos\alpha, \cos\beta, \cos\gamma\}$  – вектор единичной длины, сонаправленный с

вектором 
$$\vec{a} = \P_x, a_y, a_z$$
 т. е.  $\cos \alpha = \frac{a_x}{|\vec{a}|}, \cos \beta = \frac{a_y}{|\vec{a}|}, \cos \gamma = \frac{a_z}{|\vec{a}|}$  и  $|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2} - \frac{a_z}{|\vec{a}|}$ 

длина вектора 3.

*Градиентом* grad U функции U = f (V, V, Z) называется направление, по которому функция U = U (V, V, Z) быстрее всего возрастает. Если функция U = U (V, V, Z) дифференцируема, то

$$\operatorname{grad} U = \left(\frac{\partial U}{\partial x}, \frac{\partial U}{\partial y}, \frac{\partial U}{\partial z}\right)$$

и производная по направлению градиента равна

$$\frac{\partial u}{\partial \operatorname{grad} u} = \sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2}.$$

Аналогичные понятия вводятся и для функции двух переменных.

# Примеры

1. Найти частные производные функции  $U = \operatorname{arcctg} \left( \frac{2x - 3y^2}{Z} \right)$ 

Решение. Имеем:

$$\frac{\partial u}{\partial x} = -\frac{1}{1 + \left(\frac{2x - 3y^2}{Z}\right)^2} \left(\frac{2x - 3y^2}{Z}\right)'_x = -\frac{1}{1 + \left(\frac{2x - 3y^2}{Z}\right)^2} \frac{2}{Z} = -\frac{2Z}{Z^2 + (x - 3y^2)^2},$$

$$\frac{\partial u}{\partial y} = -\frac{1}{1 + \left(\frac{2x - 3y^2}{Z}\right)^2} \left(\frac{2x - 3y^2}{Z}\right)'_y = -\frac{1}{1 + \left(\frac{2x - 3y^2}{Z}\right)^2} \left(-\frac{6y}{Z}\right) = \frac{6yZ}{Z^2 + (x - 3y^2)^2},$$

$$\frac{\partial u}{\partial z} = -\frac{1}{1 + \left(\frac{2x - 3y^2}{Z}\right)^2} \left(\frac{2x - 3y^2}{Z}\right)'_z = -\frac{1}{1 + \left(\frac{2x - 3y^2}{Z}\right)^2} \left(-\frac{2x - 3y^2}{Z^2}\right) = \frac{2x - 3y^2}{Z^2 + (x - 3y^2)^2}.$$

2. Найти дифференциал функции  $u = xy^2 \ln \frac{y}{x - z}$  при **《**,  $y, z \neq$  **(**; 1; 1)

Решение. Т. к.

$$\frac{\partial u}{\partial x} = y^2 \ln \frac{y}{x - z} + xy^2 \frac{1}{\frac{y}{x - z}} \left(\frac{y}{x - z}\right)' x = y^2 \ln \frac{y}{x - z} + xy^2 \frac{1}{\frac{y}{x - z}} \left(-\frac{y}{\sqrt{x - z}}\right) = 0$$

$$= y^2 \ln \frac{y}{x-z} - \frac{xy^2}{x-z}, \frac{\partial u}{\partial x} \mathbf{Q}; 1; 1 = -2,$$

$$\frac{\partial u}{\partial y} = 2xy \ln \frac{y}{x - z} + xy^2 \frac{1}{\frac{y}{x - z}} \left(\frac{y}{x - z}\right) y = 2xy \ln \frac{y}{x - z} + xy^2 \frac{1}{\frac{y}{x - z}} \frac{1}{x - z} =$$

$$=2xy\ln\frac{y}{x-z}+xy,$$

$$\frac{\partial u}{\partial y} \mathbf{Q}; 1; 1 = 2, \frac{\partial u}{\partial z} = xy^2 \frac{1}{\frac{y}{x - z}} \left( \frac{y}{x - z} \right)_z = xy^2 \frac{1}{\frac{y}{x - z}} \frac{y}{\mathbf{Q} - z^2} = \frac{xy^2}{x - z}, \quad \frac{\partial u}{\partial z} \mathbf{Q}; 1; 1 = 2,$$

то по формуле (1.3)

$$dU \mathbb{Q}; 1; 1 = -2dx + 2dy + 2dZ.$$

3. Найти полное приращение и дифференциал функции  $Z = 2x^2 - 3xy + 5y^2$  при (x, y) = (x, 3)

Решение. Имеем

$$\Delta z \mathbf{Q}; 3 = z \mathbf{Q} + \Delta x, 3 + \Delta y - z \mathbf{Q}; 3 = 2 \mathbf{Q} + \Delta x \mathbf{Z} - 3 \mathbf{Q} + \Delta x \mathbf{Z} + \Delta y + 5 \mathbf{Q} + \Delta y \mathbf{Z} - 35 = 8 + 8 \Delta x + 2 \mathbf{Q} \mathbf{Z} - 18 - 6 \Delta y - 9 \Delta x - 3 \Delta x \Delta y + 45 + 30 \Delta y + 5 \mathbf{Q} \mathbf{Z} - 35.$$

Значит, приращение функции равно

$$\Delta Z \mathbf{Q}; 3 = -\Delta x + 24\Delta y + 2 \mathbf{Q}x^2 - 3\Delta x \Delta y + 5 \mathbf{Q}y^2$$
.  
Т. к.  $Z_x = 4x - 3y$ ,  $Z_x \mathbf{Q}; 3 = -1$ ,  $Z_y = -3x + 10y$  и  $Z_y \mathbf{Q}; 3 = 24$ , то  $dZ \mathbf{Q}; 3 = -dx + 24dy$ .

Вспомнив, что  $dx = \Delta x$  и  $dy = \Delta y$ , видим что  $dz \mathbf{Q}$ ; 3 главная часть приращения  $\Delta z \mathbf{Q}$ ; 3

4. Вычислить приближенно  $arctg \frac{1,02}{0.97}$ .

**Решение.** Введем в рассмотрение функцию  $Z(x, y) = \arctan \frac{x}{y}$ . И пусть  $x_0 = 1$ ,  $y_0 = 1$ ,

$$\Delta x = 0.02$$
 и  $\Delta y = -0.03$ . Так как  $Z_x' = \frac{y}{x^2 + y^2}$  и  $Z_y' = -\frac{x}{x^2 + y^2}$  то, используя формулу (1.4) имеем

$$\arctan \frac{1,02}{0,97} = Z \bigcirc 02; \ 0.97 \Rightarrow Z \bigcirc 0 + \Delta x, \ y_0 + \Delta y \Rightarrow$$

$$\approx Z \bigcirc 0, \ y_0 \Rightarrow Z_x \bigcirc 0, \ y_0 \Rightarrow X + Z_y \bigcirc 0, \ y_0 \Rightarrow Y =$$

$$= \frac{\pi}{4} + \frac{1}{2} \cdot 0.02 - \frac{1}{2} \cdot \bigcirc 0.03 \Rightarrow 0.805.$$

Если вычислить  $\arctan \frac{1,02}{0.97}$  более точно, то получим 0,810519.

5. Найти первый и второй дифференциал функции  $U = (2 - yz + 2z^3)e^{3x-2y+5z}$  при (x, y, z) = (x-1; -1)

Решение. Так как,

$$\frac{\partial u}{\partial x} = \left(z^{3} + 3x^{2} - 3yz + 2x\right)e^{3x-2y+5z} u \frac{\partial u}{\partial x} \left(-1; -1\right) = -4,$$

$$\frac{\partial u}{\partial y} = -\left(z^{3} + 2x^{2} - 2yz + z\right)e^{3x-2y+5z} u \frac{\partial u}{\partial y} \left(-1; -1\right) = 5,$$

$$\frac{\partial u}{\partial z} = \left(0z^{3} + 5x^{2} - 5yz + 6z^{2} - y\right)e^{3x-2y+5z} u \frac{\partial u}{\partial z} \left(-1; -1\right) = -3,$$

$$\frac{\partial^{2}u}{\partial x^{2}} = \left(8z^{3} + 9x^{2} - 9yz + 12x + 2\right)e^{3x-2y+5z} u \frac{\partial^{2}u}{\partial x^{2}} \left(-1; -1\right) = -4,$$

$$\frac{\partial^{2}u}{\partial y\partial x} = \frac{\partial^{2}u}{\partial x\partial y} = -\left(2z^{3} + 6x^{2} - 6yz + 4x + 3z\right)e^{3x-2y+5z} u$$

$$\frac{\partial^{2}u}{\partial z\partial x} = \frac{\partial^{2}u}{\partial x\partial z} = \left(0z^{3} + 15x^{2} - 15yz + 18z^{2} + 10x - 3y\right)e^{3x-2y+5z} u$$

$$\frac{\partial^{2}u}{\partial z\partial x} \left(-1; -1\right) = \frac{\partial^{2}u}{\partial x\partial z} \left(-1; -1\right) = 1,$$

$$\frac{\partial^{2}u}{\partial z\partial x} = 4\left(z^{3} + x^{2} - yz + z\right)e^{3x-2y+5z} u \frac{\partial^{2}u}{\partial y^{2}} \left(-1; -1\right) = -12,$$

$$\frac{\partial^{2}u}{\partial z\partial y} = \frac{\partial^{2}u}{\partial y\partial z} = -\left(0z^{3} + 10x^{2} - 10yz + 12z^{2} - 2y + 5z + 1\right)e^{3x-2y+5z} u$$

$$\frac{\partial^{2}u}{\partial z\partial y} \left(-1; -1\right) = \frac{\partial^{2}u}{\partial y\partial z} \left(-1; -1\right) = 10,$$

$$\frac{\partial^{2}u}{\partial z\partial y} \left(-1; -1\right) = \frac{\partial^{2}u}{\partial y\partial z} \left(-1; -1\right) = 10,$$

Отсюда, используя формулы (1.3) и (1.5) имеем

$$dU(1;-1;-1) = -4dx + 5dy - 3dz$$

$$d^{2}U(-1;-1) = -4dx^{2} + 22dxdy + 2dxdz - 12dy^{2} + 20dydz + 8dz^{2}.$$

6. Найти 
$$\frac{dZ}{dt}$$
 при  $t = \frac{\pi}{4}$ , если  $Z = \frac{2x^2 - y}{x + y^2}$ ,  $x = tgt$  и  $y = ctgt$ .

Решение. Рассмотрим два способа решения

Первый способ. Z ( ) f  $\frac{2tg^2t-ctgt}{tgt+ctg^2t}$ .

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \left(\frac{2\mathrm{tg}^2 t - \mathrm{ctg}t}{\mathrm{tg}t + \mathrm{ctg}^2 t}\right)' = \frac{\left(\mathrm{tg}^2 t - \mathrm{ctg}t\right)' \left(\mathrm{g}t + \mathrm{ctg}^2 t\right) - \left(\mathrm{tg}^2 t - \mathrm{ctg}t\right)' \left(\mathrm{g}t + \mathrm{ctg}^2 t\right)'}{\left(\mathrm{g}t + \mathrm{ctg}^2 t\right)'} = \frac{\left(\frac{4\mathrm{tg}t}{\cos^2 t} + \frac{1}{\sin^2 t}\right) \left(\mathrm{g}t + \mathrm{ctg}^2 t\right) - \left(\mathrm{tg}^2 t - \mathrm{ctg}t\right)' \left(\frac{1}{\cos^2 t} - 2\frac{\mathrm{ctg}t}{\sin^2 t}\right)}{\left(\mathrm{g}t + \mathrm{ctg}^2 t\right)'}$$

Отсюда,

$$\frac{dz}{dt} \left( \frac{\pi}{4} \right) = \frac{(4+2)(4+1) \cdot (4-1)(4-4)}{(4+1)^{2}} = \frac{20+2}{4} = \frac{11}{2}.$$

**Второй способ.** При  $t = \frac{\pi}{4}$  имеем x = y = 1. Т. к. функция z является сложной, а также,

$$\frac{dx}{dt} = \frac{1}{\cos^2 t} \text{ if } \frac{dx}{dt} \left(\frac{\pi}{4}\right) = 2,$$

$$\frac{dy}{dt} = -\frac{1}{\sin^2 t} \text{ if } \frac{dy}{dt} \left(\frac{\pi}{4}\right) = -2,$$

$$\frac{\partial z}{\partial x} = \frac{4x \sqrt{4 + y^2} - \sqrt{2} \sqrt{4x^2 - y}}{\sqrt{4 + y^2} - \sqrt{2} \sqrt{4x^2 - y}} \text{ if } \frac{\partial z}{\partial x} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{\partial y} \sqrt{4x^2 - y} \text{ if } \frac{\partial z}{$$

то, используя формулу (1.6) имеем

$$\frac{\mathrm{d}z}{\mathrm{d}t}\left(\frac{\pi}{4}\right) = \frac{\partial z}{\partial x} < 1 \frac{\mathrm{d}x}{\mathrm{d}t}\left(\frac{\pi}{4}\right) + \frac{\partial z}{\partial y} < 1 \frac{\mathrm{d}y}{\mathrm{d}t}\left(\frac{\pi}{4}\right) = \frac{7}{4} \cdot 2 + < 1 > < 2 > = \frac{11}{2}.$$

7. Найти первую и вторую производную функции y = y заданной неявно уравнением  $y^3 + y + x = 1$  при  $\{x, y \neq x = 1\}$ 

**Решение.** Функция y = y задается уравнением F (x, y) = 0, где F  $(x, y) = y^3 + y + x - 1$ . Так как  $F'_x = 1$  и  $F'_y = 3y^2 + 1$ , то используя формулу (1.7) имеем  $y' = -\frac{1}{3y^2 + 1}$ .

Выражение для производной y' можно также получить, продифференцировав равенство  $y^3 + y + x = 1$  по x учитывая, что y функция от x и выразив y'.

$$\P^3 + y + x = 1'_x$$
,  $3y^2y' + y' + 1 = 0$ ,  $\P^2 + 1y' + 1 = 0$ ,  $y' = -\frac{1}{3y^2 + 1}$ .

Отсюда, 
$$\sqrt{(1)} = -\frac{1}{3\sqrt{2}(1)} = -\frac{1}{4}$$
.

Для нахождения y'' продифференцируем y' по x (учитывая, что y функция от x). Получим

$$y'' = \frac{(y^2 + 1)}{(y^2 + 1)} = \frac{6yy}{(y^2 + 1)} = -\frac{6y}{(y^2 + 1)}.$$
Отсюда,  $y'' (1) = -\frac{6y(1)}{(y^2 + 1)} = -\frac{3}{32}.$ 

8. Функция z = z (к, у) задана неявно уравнением  $z^2 + z - y^2 - 3xy + 2 = 0$ . Найти частные производные первого порядка. Непосредственно проверить, что смешанные производные второго порядка совпадают и найти их при (к, у, z) (1; 1)

**Решение.** Частные производные функции Z = Z (X, Y) можно найти, используя формулу (1.9) или непосредственным дифференцированием уравнения  $Z^2 + Z - Y^2 - 3xy + 2 = 0$  по обеим переменным.

Отсюда,  $Z_x = \frac{3y}{2z+1}$  и  $Z_x$  (1)=1.

$$(2 + z - y^2 - 3xy + 2)' = 0'_y,$$
  

$$2zz'_y + z'_y - 2y - 3x = 0.$$

Отсюда, 
$$Z_y = \frac{3x + 2y}{2z + 1}$$
 и  $Z_y \in 1 = \frac{5}{3}$ .

$$Z''_{yx} = (Z'_x)'_y = \left(\frac{3y}{2z+1}\right)'_y = \frac{3(2z+1)-6yZ'_y}{(2z+1)^2} = \frac{3(2z+1)-6y(x+2y)}{(2z+1)^2} = \frac{12z^2+12z-18xy-12y^2+3}{(2z+1)^2},$$

$$Z''_{xy} = (Z'_y)'_x = \left(\frac{3x+2y}{2z+1}\right)'_x = \frac{3(2z+1)-2(x+2y)'_x}{(2z+1)} = \frac{3(2z+1)-6y(x+2y)}{(2z+1)} = \frac{12z^2+12z-18xy-12y^2+3}{(2z+1)} = Z''_{yx},$$

$$Z''_{xy} < 1 \neq Z''_{yx} < 1 \neq -\frac{1}{3}$$
.

9. Найти производную функцию  $U = \sqrt{x^2 - y + z^3 + 3} + e^{x - y + 2z - 2}$  по направлению  $\vec{a} = \mathbf{Q}$ ; 1; 2 при  $\mathbf{Q}$ ,  $y, z \neq \mathbf{Q}$ 3; 2

Решение. Имеем:

$$\frac{\partial u}{\partial x} = \frac{x}{\sqrt{x^2 - y + z^3 + 3}} + e^{x - y + 2z - 2} \text{ и } \frac{\partial u}{\partial x} \text{ (3;2)} = \frac{4}{3},$$

$$\frac{\partial u}{\partial y} = -\frac{1}{2\sqrt{x^2 - y + z^3 + 3}} - e^{x - y + 2z - 2} \text{ и } \frac{\partial u}{\partial y} \text{ (3;2)} = -\frac{7}{6},$$

$$\frac{\partial u}{\partial z} = \frac{3z^2}{2\sqrt{x^2 - y + z^3 + 3}} + 2e^{x - y + 2z - 2} \text{ и } \frac{\partial u}{\partial x} \text{ (3;2)} = 4,$$

$$|\vec{a}| = 3, \cos\alpha = \frac{2}{3}, \cos\beta = \frac{1}{3} \text{ и } \cos\gamma = \frac{2}{3}.$$

Поэтому,

$$\frac{\partial u}{\partial \vec{a}} \leqslant 3; 2 = \frac{\partial u}{\partial x} \leqslant 3; 2 \cos \alpha + \frac{\partial u}{\partial y} \leqslant 3; 2 \cos \beta \alpha + \frac{\partial u}{\partial x} \leqslant 3; 2 \cos \gamma = \frac{8}{9} - \frac{7}{18} + \frac{8}{3} = \frac{19}{6}.$$

10. Найти градиент и производную по направлению градиента функции z = f(y, y) при (y, y, z) = (x, y) заданной неявно  $(x^2 y + \ln (x + 1) + z - y^2) = 0$ .

**Решение.** Продифференцировав уравнение по *X* и по *y* имеем:

$$2xy + \frac{Z_{x}}{Z+1} + Z_{x} = 0,$$

$$Z_{x} = -2xy \frac{Z+1}{Z+2},$$

$$Z_{y} \subseteq 1 = -1$$

И

$$x^{2} + \frac{Z_{y}}{Z+1} + Z_{y} - 2y = 0,$$

$$Z_{y} = (y - x^{2}) \frac{Z+1}{Z+2},$$

$$Z_{y} (1) = \frac{1}{2}.$$

Отсюда,

grad 
$$\mathbb{Z} \left( 1 \right) = \left( -1; \frac{1}{2} \right)$$

И

$$\frac{\partial Z}{\partial \operatorname{grad} Z} \leqslant 1 \geqslant \sqrt{ \leqslant 1 } + \left(\frac{1}{2}\right)^2 = \frac{\sqrt{3}}{2}.$$

## 1.6. Задачи для самостоятельного решения

Найти частные производные функций:

1. 
$$Z = \sqrt{3}y - x^2y^2 + xy + x - 1$$

2. 
$$Z = \frac{X}{\sqrt{y}} - \frac{\sqrt[3]{y}}{X^2}$$
;

3. 
$$Z = 2x^2 - 3y - \sqrt{3x^2 - 4y^2 + 25}$$
 при **(**,  $y =$ (; 3)

4. 
$$Z = \ln (-xy - \sqrt{x^2 - y^2})$$
 при (x, y) = (x, 4)

5. 
$$U = \sqrt{2} y^{z-1^2+1}$$
;

6. Вычислить 
$$\frac{X}{2}U_x + \frac{Y}{2}U_y + \frac{Z}{3}U_z$$
, если  $U = \ln \sqrt[6]{2} - y^2 + Z^3$ 

7. Найти полное приращение и дифференциал функции  $U = X^2 y - Z^2 + yZ$  при  $\P, y, Z = \P$ ; 1; 3

Найти полный дифференциал функции:

8. 
$$Z = X^3 y^2 - Xy^3 + 3Xy - y^5$$
 при **(**,  $y = (1)$ )

9. 
$$Z = e^{2x^2 - y}$$
 при **(**,  $y \neq 0$ ; 8)

Вычислить приближенно:

10. 
$$2,01^4 \cdot 0,99^4$$
;

11. 
$$\sqrt{7,02^2-6,01^2+3}$$
.

- 12. Непосредственным вычислением проверить, что вторые смешанные производные  $Z''_{yx}$  и  $Z''_{xy}$  совпадают для функции  $Z = \sqrt{\chi^2 y}$ .
- 13. Найти первый и второй дифференциал функции  $Z = \ln \sqrt[6]{2} 3xy + 5y$  при  $\sqrt[6]{3}$ ,  $\sqrt[6]{3}$   $\sqrt[6]{3}$

14. Найти 
$$\frac{dz}{dx}$$
 при  $x = 32$ , если  $z = \frac{\ln \sqrt{(-y-29)}}{y}$ и  $y = \sqrt[5]{x}$ .

15. Найти 
$$\frac{\partial Z}{\partial t}$$
 и  $\frac{\partial Z}{\partial U}$  при  $t=2$  и  $U=1$ , если  $Z=\frac{X}{y}e^{x-y^2}$ ,  $X=\frac{t+U}{t-U}+1$  и  $Y=\frac{t}{2U}+U^2$ .

- 16. Найти первую и вторую производную при (x, y) = (x + 1) функции (y + y) заданной неявно уравнением (y + x)е (
- 17. Найти дифференциал первого и второго порядка при (x, y, z) = (x, y) заданной неявно уравнением  $(z^2 + z + x y) = 2$ . Непосредственным вычислением проверить, что вторые смешанные производные функции (z z) = (x z) совпадают.
- 18. Найти производную функции  $U = \ln \sqrt{x^2 y + z^3}$  при  $\P_0$ ,  $y_0$ ,  $z_0 \neq \P$ ; 6; 3 по направлению к точке  $\P_1$ ,  $y_1$ ,  $z_1 \neq \P$ 10; 2; 6

- 19. Найти производную функции z = f(x, y) заданной неявно уравнением  $x\sqrt{x} y\sqrt{y} + z\sqrt{z} z = 0$  в точке (x, y, z) = (x, y) по направлению  $\vec{a} = (x, y)$
- 20. Найти градиент и производную по направлению градиента функции  $Z = \frac{x 4y}{\sqrt{x 2y^2 + 2}}$  при (x, y) = (x, y)
- 21. Найти градиент и производную по направлению градиента функции z = f(x, y) заданной неявно  $x^2 2xy + 3y^2 4z + 5z^2 = 364$  при (x, y, z) = (x, y)

#### Ответы

1. 
$$\frac{\partial z}{\partial x} = 3 \sqrt{3} y - x^2 y^2 + xy + x - 1 \sqrt{3} \sqrt{x^2 y - 2xy^2 + y + 1}$$

$$\frac{\partial z}{\partial y} = 3x \sqrt{3} y - x^2 y^2 + xy + x - 1 \sqrt{2} \sqrt{2} - 2xy + 1 \sqrt{2}$$

2. 
$$\frac{\partial z}{\partial x} = \frac{1}{\sqrt{y}} + 2\frac{\sqrt[3]{y}}{x^3}; \frac{\partial z}{\partial y} = -\frac{x}{\sqrt{y^3}} - \frac{1}{3x^2\sqrt[3]{y^2}}.$$

3. 
$$\frac{\partial Z}{\partial x}$$
 **4**;3  $\Rightarrow$  2;  $\frac{\partial Z}{\partial y}$  **4**;3  $\Rightarrow$  9.

4. 
$$\frac{\partial z}{\partial x} \leqslant 4 = \frac{7}{27}$$
;  $\frac{\partial z}{\partial y} \leqslant 4 = \frac{11}{54}$ .

5. 
$$\frac{\partial U}{\partial x} = 4xy (2^2 - 2z + 1)^2 y^{2z-1^2}$$
.

$$\frac{\partial U}{\partial V} = 2X^2 (2Z^2 - 2Z + 1) (2Y^2)^{2z-1/2}; \frac{\partial U}{\partial Z} = 4(2Z - 1) (2Y)^{2z-1/2+1} \ln (2Y)$$

6. 1.

7. 
$$\Delta U \mathbf{Q}, 1, 3 = 4\Delta X + 7\Delta y - 5\Delta Z + \mathbf{Q}X^2 + 4\Delta X \Delta y + \Delta y \Delta Z - \mathbf{Q}Z^2 + \mathbf{Q}X^2 \Delta y$$
.

$$dU \mathbf{Q}; 1; 3 = 4dx + 7dy - 5dZ.$$

8. 
$$dz$$
 (1)  $= 5dx - 3dy$ .

9. 
$$dz \neq 8dx - dy$$
.

11. 4,02.

12. 
$$Z''_{yx} = Z''_{xy} = \frac{X}{2\sqrt{(x^2 - y)^2}}$$
.

13. 
$$dz \le 1 = -\frac{1}{3} dx + \frac{2}{3} dy$$
;  $d^2z \le 1 = \frac{5}{9} dx^2 - \frac{14}{9} dx dy - \frac{4}{9} dy^2$ .

14. 
$$\frac{dZ}{dx}$$
 (; 2)  $=$   $\frac{79}{160}$ .

15. 
$$\frac{\partial z}{\partial t} \mathbf{Q}; 1 = -\frac{19}{2}; \frac{\partial z}{\partial u} \mathbf{Q}; 1 = 1.$$

16. 
$$y = -\frac{1}{2}$$
;  $y' = \frac{3}{8}$ .

17. 
$$dz \in 1 = -\frac{1}{3}dx + \frac{1}{3}dy$$
;  $d^2z \in 1 = -\frac{2}{27}dx^2 + \frac{4}{27}dxdy - \frac{2}{27}dy^2$ .

18. 
$$\frac{\partial u}{\partial \vec{a}} \mathbf{\ell}$$
; 6; 3  $\Rightarrow \frac{37}{650}$ .

19. 
$$\frac{\partial Z}{\partial \vec{a}}$$
 (1)  $=$   $-\frac{21}{5}$ .

20. grad 
$$\mathbb{Z}(3; 2) = \left(\frac{3}{2}; -8\right); \frac{\partial U}{\partial \operatorname{grad} \mathbb{Z}}(3; 2) = \frac{\sqrt{265}}{2}.$$

21. grad 
$$\mathbb{Z} \leftarrow 20; -12 \Rightarrow \mathbb{Z} \leftarrow 20; -12 \Rightarrow \sqrt{5}$$
.

# 1.7. Уравнение касательной плоскости и нормали к поверхности

Пусть дана поверхность Z = f(x, y)и такая точка  $M_0(x_0, y_0)$  что в ней функция Z = f(x, y) дифференцируема. И пусть  $Z_0 = f(x_0, y_0)$ 

*Касательной плоскостью* к поверхности Z = f(x, y) в точке  $M_0(x_0, y_0)$  называется плоскость, проходящая через точку  $x_0, y_0, z_0$  с направляющими векторами  $\vec{a} = (0; z_x)$  с  $\vec{b} = (0; z_y)$   $\vec{b} = (0; z_y)$ 

Уравнение касательной плоскости можно записать следующим образом

$$Z = Z_x \blacktriangleleft_0, y_0 + X_0 + Z_y \blacktriangleleft_0, y_0 + Y_0 + Z_0$$

или в общем виде

$$Z_x \triangleleft (0, y_0) - X_0 \rightarrow Z_y \triangleleft (0, y_0) - y_0 \rightarrow (-Z_0) = 0$$
.

*Нормалью* к поверхности Z = f(y, y) в точке  $M_0(y_0, y_0)$  называется прямая, проходящая через точку  $M_0(y_0, y_0)$  и перпендикулярная к касательной плоскости, проходящей через эту точку.

Уравнение нормали имеет вид

$$\frac{x - x_0}{Z_x \, \P_0, y_0} = \frac{y - y_0}{Z_y \, \P_0, y_0} = \frac{z - z_0}{-1}.$$

В том случае, если поверхность задана в неявном виде F(x, y, z) = 0, то уравнение касательной плоскости, проходящей через точку  $M_0(x, y, z) = 0$ , поверхности, имеет вид

$$F'_{x}(x_{0}, y_{0}, z_{0}) - x_{0} + F'_{y}(x_{0}, y_{0}, z_{0}) - y_{0} + F'_{z}(x_{0}, y_{0}, z_{0}) = 0.$$

А уравнение нормали имеет вид

$$\frac{X - X_0}{F_x' \, \langle \langle (x_0, y_0, z_0) \rangle} = \frac{Y - Y_0}{F_y' \, \langle \langle (x_0, y_0, z_0) \rangle} = \frac{Z - Z_0}{F_z' \, \langle (x_0, y_0, z_0) \rangle}$$

Пусть даны две поверхности Z = f(x, y) и Z = g(x, y) которые пересекаются в точке  $M_0(x_0, y_0)$  тогда *углом* между поверхностями Z = f(x, y) и Z = g(x, y) в точке  $M_0(x_0, y_0)$  называется угол между касательными плоскостями, проведенными в данной точке к данным поверхностям, или что, то же самое, угол между нормалями, проведенными в данной точке к данным поверхностям.

#### Примеры

1. Найти уравнение касательной плоскости и нормали к поверхности  $Z = \frac{e^{x-\sqrt{y}-1}}{x}$  при  $\{x,y\} = \{x\}$ 

Решение. Т. к. 
$$Z \leqslant 4 = \frac{1}{3}$$
,  $Z_x = \frac{e^{x-\sqrt{y}-1}x-e^{x-\sqrt{y}-1}}{x^2} = \frac{(-1)e^{x-\sqrt{y}-1}}{x^2}$ ,  $Z_x \leqslant 4 = \frac{2}{9}$ ,

$$Z_y' = -\frac{e^{x-\sqrt{y}-1}}{2x\sqrt{y}}$$
 и  $Z_y' \in -\frac{1}{12}$  то, направляющим вектором нормали к

поверхности в точке 
$$\mathcal{M}_0\bigg(3;4;\frac{1}{3}\bigg)$$
 является вектор  $\vec{n}=\bigg(\frac{2}{9};-\frac{1}{12};-1\bigg)$ , или коллинеарный ему  $\vec{n}=\{-3;-36\}$ 

Отсюда следует, что уравнение касательной плоскости в точке  $M_0 \bigg( 3; 4; \frac{1}{3} \bigg)$  имеет

вид  $Z = \frac{2}{9} (-3) + \frac{1}{12} (-4) + \frac{1}{3}$ , или в общем виде 8x - 3y - 36z = 0. Уравнение

нормали в точке 
$$M_0\left(3;4;\frac{1}{3}\right)$$
 имеет вид  $\frac{x-3}{8} = \frac{y-4}{-3} = \frac{z-\frac{1}{3}}{-36}$ .

2. Найти уравнение касательной плоскости и нормали к поверхности  $Z = Z \langle x, y \rangle$  заданной неявно  $\sqrt{X+Z} - Z + 2 \frac{y^2 - X}{Z} - y = -2$  в точке  $M_0 \langle x, 1, 2 \rangle$ 

**Решение.** Данная поверхность задается уравнением F(x, y, z) = 0, где  $F(x, y, z) = \sqrt{x + z} - z + 2\frac{y^2 - x}{z} - y + 2$ . Так как  $F'_x = \frac{1}{2\sqrt{x + z}} - \frac{2}{z}$ ,  $F'_y = 4\frac{y}{z} - 1$  и  $F'_z = \frac{1}{2\sqrt{x + z}} - 1 - 2\frac{y^2 - x}{z^2}$ , то  $F'_x = 2$ ,  $F'_y = 3$ ,  $F'_z = 3$ 

Поэтому, направляющим вектором нормали к поверхности в точке  $\mathcal{M}_0$  **Q**;1;2 является вектор  $\vec{n} = \left(-\frac{3}{4};1;-\frac{1}{4}\right)$ , или коллинеарный ему  $\vec{n} = \mathbf{Q};-4;1$ 

3. Для поверхности, заданной уравнением  $x^2 - 5xy + y^2 - 3xz + yz = -9$ , найти уравнение касательной плоскости, параллельной плоскости 2x + y + z + 7 = 0.

**Решение.** Т. к. касательная плоскость к поверхности параллельна плоскости 2x + y + z + 7 = 0, то у них общий нормальный вектор  $\vec{n} = \mathbf{C}$ ; 1; 1

Заданную поверхность можно записать следующим уравнением F(x, y, z) = 0, где  $F(x, y, z) = x^2 - 5xy + y^2 - 3xz + yz + 9$ . Отсюда,  $F'_x = 2x - 5y - 3z$ ,  $F'_y = -5x + 2y + z$  и  $F'_z = -3x + y$ . Значит, направляющим вектором нормали к поверхности является вектор

 $\vec{n}_1 = (x', F'_x, F'_z) = (x-5y-3z, -5x+2y+z, -3x+y)$ 

который параллелен вектору  $\vec{n}$ , поэтому  $\vec{n}_1 = \vec{a}\vec{n}$ , где  $\vec{a}$  – действительное число. Отсюда, получаем систему

$$\begin{cases} 2x - 5y - 3z = 2a \\ -5x + 2y + z = a \\ -3x + y = a \end{cases}$$

Разрешив данную систему относительно X, y и Z получаем

$$\begin{cases} x = -\frac{2a}{5} \\ y = -\frac{a}{5} \\ z = -\frac{3a}{5} \end{cases}$$

Т. к. точка  $(x, y, z) = \left(-\frac{2a}{5}; -\frac{a}{5}; -\frac{3a}{5}\right)$  должна удовлетворять уравнению поверхности F(x, y, z) = 0, то имеем

$$\frac{4}{25} \partial^2 - \frac{2}{5} \partial^2 + \frac{1}{25} \partial^2 - \frac{18}{25} \partial^2 + \frac{3}{25} \partial^2 + 9 = 0,$$
$$-\frac{4}{5} \partial^2 = -9.$$

Значит,  $\partial = \pm \frac{3}{2} \sqrt{5}$ .

Так как при 
$$\partial = -\frac{3}{2}\sqrt{5}$$
 **4**,  $y, z = \left(\frac{3\sqrt{5}}{5}; \frac{3\sqrt{5}}{10}; \frac{9\sqrt{5}}{10}\right)$ , и при  $\partial = \frac{3}{2}\sqrt{5}$ 

 $(x, y, z) = \left(-\frac{3\sqrt{5}}{5}; -\frac{3\sqrt{5}}{10}; -\frac{9\sqrt{5}}{10}\right)$  и направляющим вектором нормали в данных

точках поверхности является вектор  $\vec{n} = \mathbf{Q}; 1; 1$  то

$$2\left(x - \frac{3\sqrt{5}}{5}\right) + y - \frac{3\sqrt{5}}{10} + z - \frac{9\sqrt{5}}{10} = 0,$$
$$10x + 5y + 5z - 12\sqrt{5} = 0$$

И

$$2\left(x + \frac{3\sqrt{5}}{5}\right) + y + \frac{3\sqrt{5}}{10} + z + \frac{9\sqrt{5}}{10} = 0,$$
$$10x + 5y + 5z + 12\sqrt{5} = 0 -$$

искомые касательные плоскости.

4. Под каким углом пересекаются конус  $4Z^2 = X^2 + 3y^2$  и гиперболический параболоид Z = Xy при X = 1 и y = 1.

**Решение.** Так как при x=1 и y=1 гиперболический параболоид принимает значение z=1, то данные поверхности пересекаются в точке  $M_0(1; 1; 1)$ .

**Первый способ.** Так как точка  $M_0(1; 1; 1)$  принадлежит конусу  $4z^2 = x^2 + 3y^2$ , то

уравнение данного конуса можно записать в виде  $Z = \frac{\sqrt{\chi^2 + 3 \, y^2}}{2}$ . Отсюда,

$$Z_x' = \frac{X}{2\sqrt{X^2 + 3y^2}}$$
 и  $Z_y' = \frac{3y}{2\sqrt{X^2 + 3y^2}}$ . Т. к.  $Z_x' \in 1 = \frac{1}{4}$  и  $Z_y' \in 1 = \frac{3}{4}$ , то

направляющим вектором нормали к конусу в точке  $\mathcal{M}_0(1;1;1)$  является вектор

$$\vec{n}_1$$
 **(**; 3; -4) он коллинеарен вектору  $\vec{n} = \left(\frac{1}{4}; \frac{3}{4}; -1\right)$ .

Для гиперболического параболоида Z = Xy имеем,  $Z_x = y$  и  $Z_y = x$ . Значит, направляющим вектором нормали к гиперболическому параболоиду в точке  $\mathcal{M}_0(1;1;1)$  является вектор  $\vec{n}_2$  (;1;-1).

Отсюда,  $\cos \varphi = \left| \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1| \cdot |\vec{n}_2|} \right| = \left| \frac{8}{\sqrt{26}\sqrt{3}} \right| = \frac{8}{\sqrt{78}}$ . Поэтому, угол между конусом и

гиперболическим параболоидом равен  $\arccos \frac{8}{\sqrt{78}}$ .

**Второй способ.** Уравнение конуса можно переписать в виде F(x, y, z) = 0, где  $F(x, y, z) = 4z^2 - x^2 - 3y^2$ . Так как,  $F'_x = -2x$ ,  $F'_y = -6y$  и  $F'_z = 8z$ , то направляющим вектором нормали к конусу в точке  $M_0(1; 1; 1)$  является вектор

 $\vec{n} = \{ (2, -6, 8) \}$  который параллелен вектору  $\vec{n}_1$ . Дальше решение такое же, как и в первом способе.

## 1.8. Задачи для самостоятельного решения

Найти уравнения касательной плоскости и нормали к следующим поверхностям в указанных точках:

1. 
$$Z = x^2 - 3xy + 4y^2 - 5x + y + 2$$
 при **(**,  $y \neq$  **(** 2)

2. 
$$Z = \cos^2 x \sin y$$
 при  $\P$ ,  $y = \left(\frac{\pi}{3}; \frac{\pi}{3}\right)$ .

3. 
$$Z = e^{y^2 \sin x}$$
 при  $\P$ ,  $y = \left(\frac{\pi}{2}; 1\right)$ .

4. Найти расстояние от точки 
$$M_0\!\left(\!-\frac{\pi}{2};1;1\right)$$
 до касательной плоскости к

поверхности  $Z = \sqrt{+1}$   $\int tg y$ , проведенной в точке с координатами  $\sqrt{+}$   $\int \frac{\pi}{4}$ .

- 5. Найти углы, которые образует нормаль к поверхности  $Z = \sqrt{-1 + x^2 + 2y}$  в точке  $(x, y) = (x^2)^2$  с осями координат.
- 6. Для поверхности  $z=5x^2-3xy+6$  найти уравнение касательной плоскости, параллельной плоскости 16x-12y-4z=1.
- 7. Найти угол между поверхностями  $Z_1 = \sqrt{X^2 + Xy 1}$  и  $Z_2 = X^2 y^2 + 1$  при (x, y) = (x, 1)

Найти уравнения касательной плоскости и нормали к следующим поверхностям в указанных точках:

8. 
$$(2x-3y+1)(x+z)(z-y+2)=12$$
 в точке  $M_0$  **Q**; 1; 1

9. 
$$4^{xz} + 4^{yz} = 8$$
 в точке  $M_0$  (1; 1)

- 10.  $Z^2 2Z + 3XZ + 2X^2 + y^2 + 3X Xy 5yZ + 3y + 2 = 0$  в точках пересечения с осью Oy.
- 11. Для поверхности  $2x^2 + z^2 + 3x 4y + 9z = 12$  найти уравнение нормали, параллельной прямой  $\frac{x-6}{5} = \frac{y+4}{4} = \frac{z-2}{3}$ .
- 12. Под каким углом пересекаются поверхности  $\sqrt{Z^2 3} + Z = X^2 y^2$  и  $Z^2 + Z = X y + 5$  в точке  $M_0$  **(**; 1; 2 ).

#### Ответы

1. 
$$9x-14y+z+9=0$$
;  $\frac{x-1}{-9}=\frac{y-2}{14}=\frac{z-10}{-1}$ .

2. 
$$18x - 3y + 24z - 5\pi - 3\sqrt{3} = 0$$
;  $\frac{x - \pi/3}{-3/4} = \frac{y - \pi/3}{1/8} = \frac{z - \sqrt{3}/8}{-1}$ .

3. 
$$2ey - z - e = 0$$
;  $\frac{x - \pi/2}{0} = \frac{y - 1}{2e} = \frac{z - e}{-1}$ . 4.  $\sqrt{6}/3$ .

5. С осью  $O_X$ :  $\pi/3$ ; с осью  $O_Y$ :  $\pi/3$ ; с осью  $O_Z$ :  $\pi/4$ .

6. 
$$4x-3y-z+7=0$$
.

7. 
$$\arccos(14/7)$$

8. 
$$8x-12y+5z-9=0$$
;  $\frac{x-2}{8} = \frac{y-1}{-12} = \frac{z-1}{5}$ .

9. 
$$x+y+2z-4=0$$
;  $\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-1}{2}$ .

10. a) 
$$5x - y + 8z - 2 = 0$$
;  $\frac{x}{5} = \frac{y+2}{-1} = \frac{z}{8}$ ; 6)  $4x + y + 3z + 1 = 0$ ;  $\frac{x}{4} = \frac{y+1}{1} = \frac{z}{3}$ .

11. 
$$\frac{x+2}{5} = \frac{y+7}{4} = \frac{z+6}{3}$$
.

12. 
$$\arccos(\sqrt{87}/87)$$

#### 1.9. Экстремум функции нескольких переменных

#### Локальные экстремумы функции двух переменных

Функция Z = f(x, y) имеет локальный максимум (минимум) в точке  $M_0(x_0, y_0)$ , если значения функции в этой точке больше (меньше), чем ее значение в любой другой точке M(x, y) некоторой окрестности точки  $M_0$ , т.е.  $f(x_0, y_0) > f(x, y)$  [соответственно  $f(x_0, y_0) < f(x, y)$ ] для всех точек M(x, y), удовлетворяющих условию  $|M_0M| < \delta$ , где  $\delta$ - достаточно малое положительное число.

Локальные максимум и минимум функции называются ее локальными экстремумами. Точка  $M_0$ , в которой достигается экстремум, называется точкой локального экстремума.

## Необходимые условия экстремума

Если дифференцируемая функция Z = f(x, y) достигает экстремума в точке  $\mathcal{M}_0(x_0, y_0)$ , то ее частные производные первого порядка в этой точке равны нулю, т.е.  $\frac{\partial f(x_0, y_0)}{\partial x} = 0$ ,  $\frac{\partial f(x_0, y_0)}{\partial y} = 0$ .

Эти уравнения эквивалентны одному:  $df(x_0, y_0) = 0$ . Точки, в которых частные производные равны нулю, называются стационарными точками. Не всякая стационарная точка является точкой экстремума. В стационарной точке касательная плоскость к поверхности Z = f(x, y) параллельна плоскости Oxy.

#### Достаточные условия локального экстремума

Пусть  $M_0(X_0, y_0)$  — стационарная точка дважды дифференцируемой в некоторой окрестности точки  $M_0$  функции и пусть  $A = f_{\chi\chi}^{"}(X_0, y_0), B$ 

$$f_{XXX}((X_{0},Y_{0})), B = f_{XYY}((X_{0},Y_{0})), C = f_{YYY}((X_{0},Y_{0})), \Delta = \begin{vmatrix} A & B \\ B & C \end{vmatrix} = AC - B^{2}.$$

Тогда

- 1. если  $\Delta > 0$ , то функция f(x, y) в точке  $M_0(x_0, y_0)$  имеет экстремум: максимум, если A < 0; минимум, если A > 0;
- 2. если  $\Delta < 0$ , то функция f(x, y) в точке  $M_0(x_0, y_0)$  экстремума не имеет;
- 3. если  $\Delta = 0$ , требуются дополнительные исследования. В этом случае используются неравенства  $f(x_0, y_0) > f(x, y)$  или  $f(x_0, y_0) < f(x, y)$ .

Эти условия эквивалентны следующим.

- 1) если  $\partial^2 f(x_0, y_0) < 0$ , то  $f(x_0, y_0)$  максимум функции Z = f(x, y);
- 2) если  $\mathcal{O}^2 f(x_0, y_0) > 0$ , то  $f(x_0, y_0)$  минимум функции z = f(x, y).

#### Примеры

1. Исследовать на экстремум функцию  $Z = 3x + 6y - x^2 - xy - y^2$ .

**Решение.** Находим частные производные первого порядка:  $z_x' = 3 - 2x - y$ ,  $z_y'$ 

$$\begin{cases} 3 - 2x - y = 0 \\ 6 - x - 2y \end{cases}$$
 Решая систему  $\begin{cases} 3 - 2x - y = 0 \\ 6 - x - 2y \end{cases}$ , находим  $x = 0$  и  $y = 3$ .

Следовательно,  $M_0(0;3)$  — стационарная точка функции Z. Находим частные производные второго порядка и их значения в найденной стационарной точке  $M_0$ .

$$\frac{\partial^2 Z}{\partial x^2} = -2; \ \frac{\partial^2 Z}{\partial x \partial y} = -1; \ \frac{\partial^2 Z}{\partial y^2} = -2. \ \text{Имеем:} \ A = -2; \ B = -1; \ C = -2; \ \Delta = 4 - 1 = 3 > 0. \ \text{Так}$$

как  $\Delta > 0$  и A < 0, то в точке  $P_0(0;3)$  функция имеет максимум:  $Z_{\text{max}} = 18 - 9 = 9$  .

2. Исследовать на экстремум функцию  $Z = 2x^3 + xy^2 + 5x^2 + y^2 + 1$ .

**Решение.** Находим стационарные точки.  $\dot{z_x} = 6x^2 + y^2 + 10x$ ;  $\dot{z_y} = 2xy + 2y$ .

$$\begin{cases} 6x^2 + y^2 + 10x = 0 \\ 2xy + 2y = 0 \end{cases}$$
 или 
$$\begin{cases} 6x^2 + y^2 + 10x = 0 \\ 2y(x+1) = 0 \end{cases}$$
.

Решение последней системы дает 4 стационарные точки:  $M_1(0;0)$ ;  $M_2(0;0)$ ;  $M_2(-5/3;0)$ ;  $M_3(-1;2)$ ;  $M_4(-1;-2)$ . Находим частные производные второго порядка:  $Z_{xx}^{"}=12x+10$ ;  $Z_{xy}^{"}=2y$ ;  $Z_{yy}^{"}=2x+2$ . Исследуем каждую стационарную точку.

- 1) В точке  $M_1(0;0)$ :  $A=10; B=0; C=2; \Delta=20$ . Так как  $\Delta>0$  и A>0, то в этой точке функция имеет минимум:  $Z_{\min}=Z(0;0)=1$ .
- 2) В точке  $M_2\left(-\frac{5}{3};0\right)$ : A=-10; B=0; C=-4/3;  $\Delta=40/3$ . Так как  $\Delta>0$  и A<0, то в этой точке функция имеет максимум:  $Z_{\text{max}}=Z\left(-\frac{5}{3};0\right)=5$  17/27.
- 3) В точке  $\mathcal{M}_3(-1;2)$ :  $A=-2;\ B=4;\ C=0;\ \Delta=-16$ . Т.к.  $\Delta<0$ , то в этой точке экстремума нет.
- 4) В точке  $\mathcal{M}_4(-1;-2)$ :  $\mathcal{A}=-2$ ;  $\mathcal{B}=-4$ ;  $\mathcal{C}=0$ ;  $\Delta=-16$ . Т.к.  $\Delta<0$ , то в этой точке экстремума нет.

3. Исследовать на экстремум функцию  $Z = X^{A} + Y^{A}$ .

**Решение.** Вычислим частные производные первого порядка функции  $z: z_x' = 4x^3, z_y' = 4y^3$ . Решая систему уравнений  $\begin{cases} 4x^3 = 0 \\ 4y^3 = 0 \end{cases}$ , находим стационарную точку  $M_0(0;0)$  данной функции. Т.к.  $A = z_x''(M_0) = 0$ ,  $B = z_{xy}''(M_0) = 0$ ,  $C = z_{yy}''(M_0) = 0$ , то  $\Delta = AC - B^2 = 0$ . Следовательно, нельзя ответить на вопрос о существовании экстремума в точке  $M_0(0;0)$ . В данном случае стационарная точка  $M_0(0;0)$  является точкой локального минимума, поскольку  $\Delta z > 0$  для любой точки M(x,y) из окрестности точки  $M_0(0;0)$   $z_{\min} = z(0;0) = 0$ .

# 1.10. Условный экстремум функции нескольких переменных

Условным экстремумам функции Z = f(x, y), называется экстремум этой функции, достигнутый при условии, что переменные X и y связаны уравнением  $\phi(x, y) = 0$  (уравнением связи).

Отыскание условного экстремума можно свести к исследованию на обычный безусловный экстремум так называемой функции Лагранжа  $F(x, y) f(x, y) + \lambda \phi(x, y)$ , где  $\lambda$  - неопределенный постоянный множитель.

Необходимые условия экстремума функции Лагранжа имеют вид:

$$\begin{cases} \frac{\partial F}{\partial x} = \frac{\partial f}{\partial x} + \lambda \frac{\partial \varphi}{\partial x} = 0 \\ \frac{\partial F}{\partial y} = \frac{\partial f}{\partial y} + \lambda \frac{\partial \varphi}{\partial y} = 0 \\ \frac{\partial F}{\partial \lambda} = \varphi \langle (x, y) \rangle = 0 \end{cases}$$

Из этой системы трех уравнений можно найти неизвестные  $x, y, \lambda$ .

Вопрос о существовании и характере условного экстремума решается на основании исследования знака второго дифференциала функции Лагранжа

 $d^2F = F_{xx}^{"}dx^2 + 2F_{xy}^{"}dxdy + F_{yy}^{"}dy^2$  для испытуемой системы значений  $x, y, \lambda$ , при условии, что dx и dy связаны уравнением  $\frac{\partial \varphi}{\partial x}dx + \frac{\partial \varphi}{\partial y}dy = 0$   $(dx^2 + dy \neq 0)$ .

Функция f(x, y) имеет условный минимум, если  $d^2 F > 0$ , и условный максимум, если  $d^2 F < 0$ .

#### Примеры

1. Исследовать на экстремум функцию  $z = x^2 + 6y - 2y + 1$  при условии, что переменные xи y связаны уравнением  $x^2 + y - 4 = 0$ .

**Решение.** Уравнение связи представляет параболу  $y=4-x^2$ . Заменив в заданной функции z переменную y через  $4-x^2$ , получим:  $z(x)=x^2+6x-2(4-x^2)+1$  или  $z(x)=3x^2+6x-7$ . Полученную функцию z(x) исследуем на экстремум.  $\frac{dz}{dx}=6x+6$ ; 6x+6=0;  $x_0=-1$ - стационарная точка функции z(x). Находим вторую производную:  $\frac{d^2z}{dx^2}=6$ . Так как вторая производная положительна, то в найденной стационарной точке функция z(x) имеет минимум. Подставив  $x_0=-1$  в уравнение связи, получим  $y_0=4-1=3$ . Следовательно, точка  $M_0(-1;3)$  — точка условного экстремума. В этой точке функция z(x,y) имеет минимум  $z_{\min}=z(-1;3)=1-6-6+1=-10$ . Определим теперь точку условного экстремума, пользуясь методом множителей Лагранжа.

- 1) Составим вспомогательную функцию Лагранжа. Так как по условию  $f(x, y) = x^2 + 6x 2y + 1$ и  $\varphi(x, y) = x^2 + y 4$ , то  $F(x, y, \lambda) = x^2 + 6x 2y + 1 + \lambda(x^2 + y 4)$ .
- 2) Находим частные производные

$$\vec{F_x}, \vec{F_y}, \vec{F_\lambda}$$
.  $\vec{F_x} = 2x + 6 + 2\lambda x$ ,  $\vec{F_y} = -2 + \lambda$ ;  $\vec{F_\lambda} = x^2 + y - 4$ .

3) Приравняв каждую частную производную нулю, получаем систему:

$$\begin{cases} 2x + 6 + 2\lambda x = 0, \\ -2 + \lambda = 0, \\ x^2 + y - 4 = 0. \end{cases}$$

Из второго уравнения  $\lambda = 2$ , тогда из первого следует  $\chi = -1$ , а из третьего  $\chi = 3$ . Таким образом,  $M_0(-1;3)$  – точка условного экстремума.

2. Найти экстремум функции Z=9-8x-6y при условии, что аргументы его удовлетворяют уравнению  $x^2+y^2=25$ .

**Решение.** Геометрически задача сводится к нахождению экстремальных значений аппликаты z плоскости z=9-8x-6y для точек ее пересечения с цилиндром  $x^2+y^2=25$ . Составляем функцию Лагранжа:  $F(x,y,\lambda)=9-8x-6y+\lambda(x^2+y^2-25)$ ; находим ее частные производные:  $F_x=-8+2\lambda x$ ,  $F_y=-6+2\lambda y$ .

Составляем систему уравнений:

$$\begin{cases} -8 + 2\lambda x = 0, \\ -6 + 2\lambda y = 0, \\ x^2 + y^2 = 25. \end{cases}$$
 или 
$$\begin{cases} \lambda x - 4 = 0, \\ \lambda y - 3 = 0, \\ x^2 + y^2 = 25. \end{cases}$$

Решив эту систему, получим:  $\lambda_1 = 1$ ,  $x_1 = 4$ ,  $y_1 = 3$ ;  $\lambda_2 = -1$ ,  $x^2 = -4$ ,  $y_2 = -3$ . Находим вторые частные производные:  $F_{xx}^{"} = 2\lambda$ ,  $F_{xy}^{"} = 0$ ,  $F_{yy}^{"} = 2\lambda$  и выражения для дифференциала второго порядка  $d^2F = 2\lambda(dx^2 + dy^2)$ . Поскольку  $d^2F > 0$  при  $\lambda_1 = 1$ ,  $\lambda_1 = 4$ ,  $\lambda_2 = -3$ , то функция  $E(x, y, \lambda)$  в этой точке имеет условный минимум. Если  $\lambda_2 = -1$ ,  $\lambda_2 = -4$ ,  $\lambda_2 = -3$ , то  $\lambda_2 = -3$ , то  $\lambda_2 = -3$ , то  $\lambda_3 = -3$ , то

Следовательно,

$$Z_{\text{max}} = f(-4; -3) = 9 - 8(-4) - 6(-3) = 59, Z_{\text{min}} = f(4,3) = 9 - 8 \cdot 4 - 6 \cdot 3 = -41.$$

## 1.11. Наибольшее и наименьшее значения (глобальные экстремумы) функции двух переменных в замкнутой области

Пусть требуется найти наибольшее и наименьшее значения функции Z = f(x, y) в некоторой замкнутой области D. Эти значения функция достигает либо во внутренних точках области, которые являются стационарными точками функции, либо на границе области. Следовательно, чтобы найти наибольшее и наименьшее значения функции в заданной замкнутой области, необходимо:

- 1) найти стационарные точки, лежащие внутри области, и вычислить значения функции в этих точках; исследовать на экстремум эти точки нет необходимости;
- 2) найти наибольшее и наименьшее значение функции на границе области; если граница области состоит из нескольких линий (участков), то исследование проводится для каждого участка в отдельности;
- 3) сравнить все полученные значения функции; наибольшее из них будет наибольшим, а наименьшее наименьшим значением функции в заданной области.

#### Пример

Найти наибольшее и наименьшее значения функции  $z = x^2 + 2y^2 - 2x - 8y + 5$  в замкнутом треугольнике AOB, ограниченном осями координат и прямой x + y - 4 = 0.

**Решение.** Найдем стационарные точки.  $\dot{z_x} = 2x - 2$ ;  $\dot{z_y} = 4y - 8$ .

Решая систему:  $\begin{cases} 2x-2=0\\ 4y-8=0 \end{cases}$  находим стационарную точку  $\mathcal{M}_0(1;2)$ . Эта точка лежит внутри области.

Вычислим значение функции в этой точке:  $Z(M_0) = Z(1;2) = 1 + 8 - \lambda - 16 + 5 = -4$ . Граница заданной области состоит из отрезка OA оси OX, отрезка OB оси OY и отрезка AB. Определим наибольшее и наименьшее значение функции Z на каждом из этих участков. На отрезке OA Y=0, а  $0 \le X \le 4$ . При Y=0 функция

 $Z = X^2 - 2X + 5$  есть функция одной независимой переменной X. Находим наибольшее и наименьшее значения этой функции на отрезке [3, 4]:  $Z_X = 2X - 2$ ; 2X = 2; 2X - 2 = 0; X = 1.  $M_1(1; 0)$  – стационарная точка.  $Z(M_1) = Z(1; 0) = 4$ .

Вычислим значения функции на концах отрезка ОА, то есть в точках О и А:

$$Z(O) = Z(0;0) = 5$$
;  $Z(A) = Z(4;0) = 13$ .

На отрезке  $OB \ x=0$  и  $0 \le y \le 4$ . При x=0 имеем  $z=2y^2-8y+5$ . Находим наименьшее и наибольшее значение этой функции z от переменной y на отрезке [3,4].

$$Z_y = 4y - 8, 4y - 8 = 0, y = 2, M_2(0;2)$$
 – стационарная точка.  $Z(M_2) = Z(0;2) = -3$ .

## 1.12. Задачи для самостоятельного решения

Исследовать на экстремум следующие функции:

1. 
$$z = x^3 + y^3 - 6xy$$
; 2.  $z = 4x - 4y - x^2 - y^2$ ;

3. 
$$Z = X^2 - Xy + y^2 + 9X - 6y + 20$$
;

4. 
$$z=3x+6y-x^2-xy-y^2$$
;

5. 
$$Z = x^3 + 8y^3 - 6xy + 1$$
;

6. 
$$Z = x^3 + y^3 - 3xy$$
;

7. 
$$Z = x^3 + 3xy^2 - 15x - 12y$$
;

8. 
$$Z = (X-1)^2 + 4y^2$$
;

9. 
$$Z = e^{-x^2 - y^2} (3x^2 + y^2)$$
;

10. 
$$Z = (1 + 2x - 2y) / \sqrt{1 + x^2 + y^2}$$
;

Найти условный экстремум функции:

11. 
$$Z=8-2x-4$$
 у при  $x^2+2y^2=12$ ;

12. 
$$z = x^2 - y^2$$
 при  $x + 2y - 6 = 0$ ;

13. 
$$Z = x^2 + y^2 + xy - 5x - 4y + 10$$
 при  $x + y = 4$ ;

14. 
$$Z = \chi^2 + y^2$$
 при  $\chi/4 + y/3 = 1$ ;

15. 
$$Z = XY$$
 при  $2X + 3Y - 5 = 0$ ;

16. 
$$U = X^2 + y^2 + Z^2$$
 при  $X^2 - y + Z^2 = 0$  и  $2X - y + Z = 0$ .

- 17. Из всех прямоугольных треугольников с заданной площадью *5* найти такой, гипотенуза которого имеет наибольшее значение.
- 18. Найти прямоугольный параллелепипед наибольшего объема, если его полная поверхность равна *S*.

Найти наименьшее и наибольшее значения функции.

- 19.  $Z = X^2 + y^2 Xy + X + y$  в замкнутом треугольнике, ограниченном осями координат и прямой X + y + 3 = 0.
- 20.  $z = x^2 + 4xy y^2 6xy 2y$  в замкнутом треугольнике, ограниченном осями координат и прямой 2x + 3y 6 = 0.
- 21.  $z = x^2 + y^2 4xy 4$  в квадрате, ограниченном осями координат и прямыми x = 4 и y = 4.
- 22.  $Z = X^2 + y^2 6X + 4y + 2$  в прямоугольнике с вершинами A(1; -3); B(1; 2); C(4; 2); D(4; -3).
- 23.  $Z = 2X^2 2y^2$  в круге  $X^2 + y^2 \le 9$ .

- 24.  $Z = \sin X + \sin Y + \sin(X + Y)$  в области  $0 \le X \le \pi/2$ ;  $0 \le Y \le \pi/2$ .
- 25.  $Z = \cos X \cos Y \cos(X + Y)$  в области  $0 \le X \le \pi$ ;  $0 \le Y \le \pi$ .
- 26. Разложить число *а* на три положительных слагаемых так, чтобы их произведение было наибольшим.
- 27. Из всех треугольников, вписанных в круг, найти тот, площадь которого наибольшая.
- 28. Из всех треугольников, имеющих данный периметр, найти наибольший по площади.
- 29. Найти прямоугольный параллелепипед данного V, имеющий наименьшую полную поверхность.
- 30. Дан треугольник с вершинами A(4;-2), B(3;6), C(-1;1). В плоскости треугольника ABC найти точку, для которой сумма квадратов расстояний до его вершин будет наименьшей.

#### Ответы

1. 
$$Z_{\min} = Z(2; 2) = -8$$
.

2. 
$$Z_{\text{max}} = Z(2; -2) = 8$$
.

3. 
$$Z_{\min} = Z(-4; 1) = -1$$
.

4. 
$$Z_{\text{max}} = Z(0; 3) = 9$$
.

5. 
$$Z_{\min} = Z(1; 1/2) = 0$$
.

6. 
$$Z_{\min} = Z(1; 1) = -1$$
.

7. 
$$Z_{\min} = Z(2; 1) = -28$$
.

8. 
$$Z_{\text{max}} = Z(-2; -1) = 28$$
.

9. 
$$Z_{\text{max}} = Z(-1; 0) = Z(1; 0) = 3e^{-1}; Z_{\text{min}} = Z(0; 0) = 0.$$

10. 
$$Z_{\text{max}} = Z(2; -2) = 3$$
.

11. 
$$Z_{\min} = Z(2; 2) = -4$$
;  $Z_{\max} = Z(-2; -2) = 20$ .

12. 
$$Z_{\min} = Z(-2; 4) = -12$$
.

13. 
$$Z_{\min} = Z(5/2; 3/2) = 15/14$$
.

14. 
$$Z_{\min} = Z(36/25; 48/25) = 144/25$$
.

15. 
$$Z_{\text{max}} = Z(5/4; 5/6) = 25/24$$
.

16. 
$$U_{\min} = U(0; 0; 0) = 0$$
;  $U_{\max} = U(2; 5; 1) = 30$ .

17. (
$$Z = X^2 + y^2$$
 при  $Xy/2 = S$ ) катеты равны.

18. (
$$U = XYZ$$
 при 2( $XY + YZ + ZX$ ) =  $S$ ), куб со стороной  $\sqrt{S/6}$ .

19. 
$$Z_{Hann} = -1$$
;  $Z_{Hano} = 6$ .

20. 
$$Z_{haum} = -9; \quad Z_{hau\delta} = 0.$$

21.  $Z_{Haum} = -36$ ;  $Z_{Hau6} = 4$ .

23.  $Z_{haum} = -18$ ;  $Z_{hau6} = 18$ .

25.  $Z_{\text{Haum}} = -1/8$ ;  $Z_{\text{Hauo}} = 1$ .

27. Равносторонний.

29. Куб с ребром  $\sqrt[3]{V}$ .

22.  $Z_{Haum} = -11$ ;  $Z_{Hau\delta} = 26$ .

24.  $Z_{\text{наим}} = 0$ ;  $Z_{\text{наиб}} = 3\sqrt{3}/2$ .

26. при а/3.

28. Равносторонний.

30.  $\mathcal{N}(2;1)$ .

## 2. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

### 2.1. Первообразная функция и неопределенный интеграл

В дифференциальном исчислении решалась задача нахождения производной f'(x), или дифференциала df = f'(x)dx функции. В интегральном исчислении решается обратная задача. По функции f(x) требуется найти функцию F(x) такую, чтобы выполнялись равенства F'(x) = f(x) или dF(x) = F'(x)dx = f(x)dx.

**Определение** 2.1. Функция F(x) называется *первообразной* для функции f(x) на множестве X, если она дифференцируема для любого  $x \in X$  и F'(x) = f(x).

*Теорема 2.1.* Любая непрерывная функция f ( ) на отрезке [a;b] имеет на этом отрезке первообразную F(x).

*Теорема 2.2.* Если  $F_1(x)$ и  $F_2(x)$  – две любые первообразные для f(x) на X , то  $F_1(x) - F_2(x) = C$  , где C – постоянная.

**Следствие.** Если F(x) — некоторая первообразная функция f(x) на множестве X, то все первообразные функции имеют вид F(x)+C, где C — постоянная.

Операция нахождения первообразной F(x) функции f(x) называется интегрированием.

**Определение 2.2.** Совокупность F(x) + C всех первообразных функции f(x) на множестве X называется *неопределенным интегралом* и обозначается

$$\int f(x)dx = F(x) + C,$$

где f(x)dx — подынтегральное выражение, f(x) — подынтегральная функция, x — переменная интегрирования.

#### Основные свойства неопределенного интеграла

1. 
$$(f ) (x) = f (x) + d(f ) (x) = f (x) = f (x)$$

- 2.  $\int dF(x) = F(x) + C;$
- 3.  $\int af(x)dx = a\int f(x)dx$ ,где  $a \neq 0$ , a постоянный множитель;

4. 
$$\int (f_1(x) \pm f_2(x) \pm \cdots \pm f_n(x)) dx = \int f_1(x) dx \pm \int f_2(x) dx \pm \cdots \pm \int f_n(x) dx$$
;

5. 
$$\int f (ax + b) dx = \frac{1}{a} F(ax + b) + C$$
;

6.  $\int f(x)dx = F(x) + C \Rightarrow \int f(u)du = F(u) + C$ , т.е. любая формула интегрирования сохраняет свой вид, если переменную интегрирования заменить любой дифференцируемой функцией этой переменной.

## Таблица основных неопределенных интегралов

В приведенной ниже таблице буква u может обозначать, как независимую переменную (u=x), так и функцию от независимой переменной (u=u(x)).

1. 
$$\int u^n du = \frac{u^{n+1}}{n+1} + C \ (n \neq -1);$$

2. 
$$\int a^{u} du = \frac{a^{u}}{\ln a} + C \ (a > 0, a \neq 1);$$

3. 
$$\int e^{u} du = e^{u} + C;$$

4. 
$$\int \frac{dU}{U} = \ln|U| + C;$$

5. 
$$\int \sin u du = -\cos u + C;$$

6. 
$$\int \cos u du = \sin u + C;$$

7. 
$$\int \frac{du}{\cos^2 u} = \operatorname{tg} u + C;$$

8. 
$$\int \frac{dU}{\sin^2 U} = -\operatorname{ctg} U + C;$$

9. 
$$\int \operatorname{sh} u du = \operatorname{ch} u + C$$
;

10. 
$$\int ch \, u du = sh \, u + C$$
;

11. 
$$\int \frac{du}{\cosh^2 u} = \tanh u + C$$

12. 
$$\int \frac{dU}{\sinh^2 U} = -\coth U + C;$$

13. 
$$\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left| \frac{a + u}{a - u} \right| + C;$$

14. 
$$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + C;$$

15. 
$$\int \frac{du}{u^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{u}{a} + C \ (a \neq 0);$$

17. 
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{\mathbf{u}}{a} + C \quad (|a|)$$

### 2.2. Основные методы интегрирования

**Непосредственное интегрирование.** Оно основано на приведении подынтегрального выражения к табличному виду и использовании свойств интеграла.

### Примеры

1. 
$$\int \sqrt{x} dx = \int (x - 2\sqrt{x} + 1) dx = \int x dx - \int 2\sqrt{x} dx + \int dx = \int x dx - 2\int x^{\frac{1}{2}} dx + \int dx = \int x dx - 2\int x^{\frac{1}{2}} dx + \int dx = \int x dx - 2\int x^{\frac{1}{2}} dx + \int dx = \int x dx - 2\int x dx + \int dx = \int x dx - 2\int x dx + \int dx = \int x dx - 2\int x dx + \int dx = \int x dx - 2\int x dx + \int dx = \int x dx - 2\int x dx + \int dx = \int x dx - 2\int x dx + \int dx = \int x dx - 2\int x dx + \int dx = \int x dx - 2\int x dx + \int dx = \int x dx - 2\int x dx + \int dx = \int x dx - 2\int x dx + \int dx = \int x dx - 2\int x dx + \int dx = \int x dx - 2\int x dx + \int dx = \int x dx - 2\int x dx + \int dx = \int x dx - 2\int x dx + \int x dx +$$

$$=\frac{x^2}{2}-2\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+x+C=\frac{x^2}{2}-\frac{4}{3}x^{\frac{3}{2}}+x+C;$$

2. 
$$\int tg^2 x dx = \left| 1 + tg^2 x = \frac{1}{\cos^2 x} \right| = \int \left( \frac{1}{\cos^2 x} - 1 \right) dx = \int \frac{dx}{\cos^2 x} - \int dx = tg x - x + C;$$

3. 
$$\int \frac{(+x^2)^2}{x(+x^2)} dx = \int \frac{(+x^2)^2}{x(+x^2)} dx = \int \frac{1+x^2}{x(+x^2)} dx + \int \frac{2x}{x(+x^2)} dx = \int \frac{dx}{x} + 2\int \frac{dx}{1+x^2} = \int \frac{dx}{x(+x^2)} dx = \int \frac{(+x^2)^2}{x(+x^2)} dx = \int \frac{dx}{x(+x^2)} dx = \int \frac{dx}{x$$

$$=\ln|x|+2\arctan x+C;$$

4. 
$$\int 2^{x} e^{2x} dx = \int 2^{x} (2^{x}) dx = \int (2^{x}) e^{2x} dx = \frac{(2^{x})^{2}}{\ln (2^{x})^{2}} + C;$$

$$+\int x^{-4} dx = -2\cos x - \frac{1}{3} \operatorname{arctg} \frac{x}{3} + \frac{x^{-3}}{-3} + C;$$

6. 
$$\int \frac{dx}{\sqrt{5-5x^2}} = \int \frac{dx}{\sqrt{5}\sqrt{1-x^2}} = \frac{1}{\sqrt{5}} \arcsin x + C;$$

7. 
$$\int \frac{x^2 dx}{1 - x^2} = \int \frac{(x^2 - 1) + 1}{1 - x^2} dx = -\int dx + \int \frac{1}{1 - x^2} dx = -x + \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right| + C;$$

8. 
$$\int \frac{2x+3}{3x+2} dx = \int \frac{2(x+3/2)}{3(x+2/3)} dx = \frac{2}{3} \int \frac{x+3/2}{x+2/3} dx = \frac{2}{3} \int \frac{x+2/3-2/3+3/2}{x+2/3} dx = \frac{2}{3} \int \frac{x+2/3-2/3+3/2}{x+2/3} dx = \frac{2}{3} \int \frac{x+3/2}{x+2/3} dx = \frac{2}{3} \int \frac{x+3/2}{x+2$$

$$= \frac{2}{3} \int \frac{(4+2/3) + 5/6}{x + 2/3} dx = \frac{2}{3} \int \left(1 + \frac{5/6}{x + 2/3}\right) dx = \frac{2}{3} x + \frac{5}{9} \int \frac{d(4+2/3)}{x + 2/3} = \frac{2}{3} x + \frac{5}{9} \ln \left|x + \frac{2}{3}\right| + C;$$

9. 
$$\int \frac{2^{x+1} - 5^{x-1}}{10^x} dx = \int \frac{2^x \cdot 2 \, dx}{\sqrt[4]{5^x}} dx - \int \frac{5^x \cdot 5^{-1}}{\sqrt[4]{5^x}} dx = 2 \int \frac{dx}{5^x} - \frac{1}{5} \int \frac{dx}{2^{+x}} = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx - \frac{1}{5} \int 2^{-x}$$

$$= \left| \mathcal{O}(-x) = -\mathcal{O}x \right| = -2\int 5^{-x} \mathcal{O}(-x) + \frac{1}{5} \int 2^{-x} \mathcal{O}(-x) = -2\frac{5^{-x}}{\ln 5} + \frac{1}{5} \frac{2^{-x}}{\ln 2} + C;$$

10. 
$$\int \frac{dx}{2+3x^2} = \frac{1}{3} \int \frac{dx}{\sqrt{2/3}} = \frac{1}{3} \int \frac{1}{\sqrt{2/3}} \arctan \left( \frac{x}{\sqrt{2/3}} \right) + C = \frac{1}{\sqrt{6}} \arctan \left( \frac{\sqrt{3}x}{\sqrt{2}} \right) + C.$$

Проверим результат интегрирования примера 10 дифференцированием.

Найдем 
$$\left(\frac{1}{\sqrt{6}} \operatorname{arctg} \frac{\sqrt{3}x}{\sqrt{2}} + C\right) = \frac{1}{\sqrt{6}} \cdot \frac{1}{1 + \left(\frac{\sqrt{3}}{2}x\right)^2} \cdot \frac{\sqrt{3}}{\sqrt{2}} = \frac{1}{2} \cdot \frac{1}{1 + \frac{3}{2}x^2} = \frac{1}{2 + 3x^2}.$$

Производная от первообразной равна подынтегральной функции, т.е. интеграл вычислен верно.

«Подведение» подынтегральной функции под знак дифференциала. По определению дифференциала функции  $\phi'(x) dx = d\phi(x)$ .

Переход от левой части равенства к правой называется подведением множителя  $\phi'(x)$  под знак дифференциала. В этом методе интегрирования используют свойства дифференциала сложной функции:

$$dx = \frac{1}{a} d (x + b) = \frac{1}{a} du \quad u = ax + b.$$

Поэтому: dx = d + C где C – произвольная постоянная,  $dx = \frac{1}{C} d + C$ 

Например: 
$$x^2 dx = \frac{1}{3} \sqrt{3} dx = \frac{1}{3} dx^3$$
; sin  $x dx = \cos dx = -d\cos x$ ,

$$xe^{x^2} dx = \frac{1}{2} d (x^2)$$
и т.д.

#### Примеры

1. 
$$\int \operatorname{tg} x dx = \int \frac{\sin x}{\cos x} dx = |\sin x dx = -d\cos x| = -\int \frac{d\cos x}{\cos x} = -\int \frac{du}{u} =$$
$$= -\ln|u| + C = -\ln|\cos x| + C;$$

2. 
$$\int 2x\sqrt{1+x^2} dx = \left|2xdx = dx^2\right| = \int (x^2 + 1)^{\frac{3}{2}} dx + C = \frac{(x^2 + 1)^{\frac{3}{2}}}{3/2} + C = \frac{$$

$$=\frac{2}{3}(2+1)^{\frac{3}{2}}+C;$$

3. 
$$\int \frac{xdx}{\sqrt[3]{1-x^2}} = \left| xdx = \frac{1}{2} dx^2 \right| = \int (-x^2)^{\frac{1}{3}} \frac{1}{2} dx^2 = -\frac{1}{2} \int (-x^2)^{\frac{1}{3}} dx - x^2 = -\frac{1}{$$

$$= -\frac{1}{2} \cdot \frac{(-x^2)^{\frac{2}{3}}}{\frac{2}{3}} + C = C - \frac{3}{4} (-x^2)^{\frac{2}{3}};$$

4. 
$$\int \frac{x^5 dx}{\sqrt{6+1}} = \left| x^5 dx = \frac{1}{6} dx^6 \right| = \frac{1}{6} \int \frac{d\sqrt{6+1}}{x^6+1} = \frac{1}{6} \ln \sqrt{6+1} + C;$$

5. 
$$\int \frac{e^{\arctan x} dx}{1+x^2} = \left| \frac{dx}{1+x^2} = d\arctan x \right| = \int e^{\arctan x} d\arctan x = e^{\arctan x} + C;$$

6. 
$$\int \cos 3x dx = \frac{1}{3} \int \cos 3x d3x = \frac{1}{3} \sin 3x + C;$$

7. 
$$\int \cos^5 x \sin x dx = \left| \sin x dx = -d \cos x \right| = -\int \cos^5 x d \cos x = -\frac{\cos^6 x}{6} + C;$$

8. 
$$\int \frac{(x^{\frac{3}{2}})dx}{x} = \left| \frac{dx}{x} \right| = d(x^{\frac{3}{2}}) = \int (x^{\frac{3}{2}})d\ln x = \frac{2}{5} \ln^{\frac{5}{2}} x + C;$$

9. 
$$\int \frac{3^x dx}{1+9^x} = \left| 3^x dx = \frac{1}{\ln 3} d3^x \right| = \frac{1}{\ln 3} \int \frac{d3^x}{1+\sqrt{3^x}} = \frac{1}{\ln 3} \arctan 3^x + C;$$

10. 
$$\int e^{-x^3} x^2 dx = \left| x^2 dx = \frac{1}{3} dx^3 \right| = \int e^{-x^3} \frac{1}{3} dx^3 = -\frac{1}{3} \int e^{-x^3} dx^3 = -\frac{1}{3} \int e^{-x} dx^3 = -\frac{1}{$$

11. 
$$\int \frac{x^3 dx}{\cos^2 (x^4 - 7)^4} \left| x^3 dx = \frac{1}{4} dx^4 \right| = \frac{1}{4} \int \frac{dx^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^2 (x^4 - 7)^4} \frac{1}{4} \cdot \frac{1}{5} \int \frac{d(x^4 - 7)^4}{\cos^$$

$$\frac{1}{20} \operatorname{tg} (x^4 - 7) + C;$$

12. 
$$\int \frac{dx}{x \ln|x|} = \left| \frac{dx}{x} = d \ln x \right| = \int \frac{d \ln x}{\ln x} = \ln \ln|x| + C;$$

13. 
$$\int e^x \cos \mathbf{C} dx = \left| e^x dx = de^x \right| = \int \cos \mathbf{C} dx = \sin \mathbf{C} dx = \sin \mathbf{C} dx$$

14. 
$$\int \frac{dx}{7+5x^2} = \int \frac{dx}{\sqrt{7}} = \frac{1}{\sqrt{5}x} = \frac{1}{\sqrt{5}} \int \frac{d\sqrt{5}x}{\sqrt{7}} = \frac{1}{\sqrt{5}} \cdot \frac{1}{\sqrt{7}} \operatorname{arctg} \frac{\sqrt{5}x}{\sqrt{7}} + C = \frac{1}{\sqrt{5}} \cdot \frac{1}{\sqrt{7}} \cdot \frac{1}{\sqrt{7}} \operatorname{arctg} \frac{\sqrt{5}x}{\sqrt{7}} + C = \frac{1}{\sqrt{5}} \cdot \frac{1}{\sqrt{7}} \cdot$$

$$= \frac{1}{\sqrt{35}} \arctan \sqrt{\frac{5}{7}} x + C;$$

15. 
$$\int \sin(-9x) dx = \left| dx = -\frac{1}{9} d(-9x) \right| = \frac{1}{9} \cos(-9x) + C;$$

16. 
$$\int \frac{dx}{5-3x} = -\frac{1}{3} \int \frac{d(-3x)}{5-3x} = -\frac{1}{3} \ln|5-3x| + C;$$

17. 
$$\int \frac{dx}{\sqrt{3-8x^2}} = \int \frac{dx}{\sqrt{\sqrt{3}^2 - \sqrt{8}x}} = \frac{1}{\sqrt{8}} \int \frac{d\sqrt{8}x}{\sqrt{\sqrt{3}^2 - \sqrt{8}x^2}} = \frac{1}{\sqrt{8}} \arcsin \frac{\sqrt{8}x}{\sqrt{3}} + C;$$

18. 
$$\int \frac{x-7}{3x^2+4} \, dx = \int \frac{xdx}{3x^2+4} - \int \frac{7dx}{3x^2+4} = \frac{1}{2} \int \frac{dx^2}{3x^2+4} - 7 \int \frac{dx}{\sqrt{3}x^2+4} = \frac{1}{2} \int \frac{dx^2}{3x^2+4} = \frac{1}{2} \int \frac{dx}{3x^2+4} = \frac$$

$$= \frac{1}{6} \int \frac{d(x^2 + 4)}{3x^2 + 4} \frac{7}{\sqrt{3}} \int \frac{d(\sqrt{3}x)}{(\sqrt{3}x^2 + 2^2)} = \frac{1}{6} \ln(x^2 + 4) \frac{7}{2 \cdot \sqrt{3}} \operatorname{arctg} \frac{\sqrt{3}x}{2} + C;$$

19. 
$$\int \frac{dx}{\sqrt{6-2x^2}} = \int \frac{dx}{\sqrt{\sqrt{6^2-\sqrt{2}x^2}}} = \frac{1}{\sqrt{2}} \int \frac{d\sqrt{2}x}{\sqrt{\sqrt{6^2-\sqrt{2}x^2}}} = \frac{1}{\sqrt{2}} \arcsin \frac{\sqrt{2}x}{\sqrt{6}} + C =$$

$$= \frac{1}{\sqrt{2}}\arcsin\frac{x}{\sqrt{3}} + C;$$

20. 
$$\int \frac{dx}{\sqrt{2x^2 - 6}} = \frac{1}{\sqrt{2}} \int \frac{d\sqrt{2}x}{\sqrt{\sqrt{2}x^2 - \sqrt{6}}} = \frac{1}{\sqrt{2}} \ln \left| \sqrt{2}x + \sqrt{2x^2 - 6} \right| + C;$$

21. 
$$\int e^{4-5x} dx = \left| dx = -\frac{1}{5} d\mathbf{4} - 5x \right| = -\frac{1}{5} \int e^{4-5x} d\mathbf{4} - 5x = -\frac{1}{5} e^{4-5x} + C;$$

22. 
$$\int \frac{\sqrt{\ln (x-1)}}{2x-1} dx = \left| \frac{dx}{2x-1} \right| = \frac{1}{2} \cdot \frac{d(x-1)}{2x-1} = \frac{1}{2} d(x-1) = \frac{1}{2} d($$

$$=\frac{1}{2}\int \mathbf{m} (x-1)^{\frac{1}{2}} d\mathbf{m} (x-1)^{\frac{1}{2}} \frac{1}{2} \cdot \frac{2}{3} \ln^{\frac{3}{2}} |2x+1| + C = \frac{1}{3} \ln^{\frac{3}{2}} |2x+1| + C;$$

23. 
$$\int \frac{dx}{\arcsin x \cdot \sqrt{1 - x^2}} = \left| \frac{dx}{\sqrt{1 - x^2}} = d \arcsin x \right| = \int \frac{d \arcsin x}{\arcsin x} = \ln \left| \arcsin x \right| + C;$$

24. 
$$\int \frac{xdx}{e^{x^2-3}} = \left| xdx = \frac{1}{2} dx^2 \right| = \frac{1}{2} \int \frac{dx^2}{e^{x^2-3}} = -\frac{1}{2} e^{3-x^2} + C;$$

25. 
$$\int \frac{dx}{5x^3 - 4} = \frac{1}{\sqrt{5}} \int \frac{d\sqrt{5}x}{\sqrt{5}x^2 - 2^2} = \frac{1}{\sqrt{5}} \cdot \frac{1}{2 \cdot 2} \ln \left| \frac{\sqrt{5}x - 2}{\sqrt{5}x + 2} \right| + C = \frac{1}{4\sqrt{5}} \ln \left| \frac{\sqrt{5}x - 2}{\sqrt{5}x + 2} \right| + C.$$

## 2.3. Задачи для самостоятельного решения

Вычислить интегралы, используя «подведение» множителя под знак дифференциала и непосредственное интегрирование.

$$1. \int \mathbf{d} - x^2 \int dx;$$

2. 
$$\int \frac{\sqrt{1-x^2} + \sqrt{1+x^2}}{\sqrt{1-x^4}} dx;$$

$$3. \int \sqrt{1+\sin 2x} dx;$$

4. 
$$\int \frac{1+2x^2}{x^2 + x^2} dx$$
;

$$5. \int 2\cos^2 \frac{x}{2} dx;$$

$$6.\int \frac{dx}{\sqrt{7-7x^2}};$$

7. 
$$\int \frac{(+\sqrt{x})^3}{\sqrt[3]{x}} dx;$$

$$8. \int \frac{1+\cos^2 x}{1+\cos 2x};$$

9. 
$$\int \frac{x^2+3}{x^2-1} dx$$
;

10. 
$$\int \frac{\mathrm{dx}}{\sqrt{3x^2-2}} dx;$$

11. 
$$\int \sqrt{5-7x} dx;$$

$$12. \int \frac{dx}{\sqrt[3]{2-9x}};$$

13. 
$$\int \sqrt[3]{(1-3x)^2} dx$$
;

$$14. \int \frac{dx}{4-3x};$$

15. 
$$\int \frac{dx}{8x+13};$$

16. 
$$\int \mathbf{Q} x - 3^{+5} dx$$
;

17. 
$$\int \frac{\sin x dx}{\cos x + 1};$$

18. 
$$\int \sin \mathbf{6} - 5x \, dx;$$

19. 
$$\int \frac{3dx}{\sqrt{7x^2-4}}$$
;

20. 
$$\int \frac{dx}{\sqrt{5x^2+3}}$$
;

21. 
$$\int \frac{9 \, dx}{2 \, x^2 - 7}$$
;

22. 
$$\int \frac{dx}{2-3x^2}$$
;

23. 
$$\int \frac{2dx}{4+3x^2}$$
;

24. 
$$\int \frac{dx}{(x+1)^n} = (x+1)^n$$

25. 
$$\int \cos^7 2x \sin 2x dx;$$

26. 
$$\int \frac{dx}{\sin^2 x \cot^3 x};$$

27. 
$$\int \frac{\arcsin^4 x}{\sqrt{1-x^2}} dx;$$

28. 
$$\int \mathbf{Q}^x + 3^x \, dx$$
;

29. 
$$\int \frac{x^3 dx}{x^8 - 2}$$
;

$$30. \int \frac{dx}{x\sqrt{x^2} + 1}.$$

#### Ответы

1. 
$$27x - 9x^3 + \frac{9}{5}x^5 - \frac{1}{7}x^7 + C$$
;

2. 
$$\ln |x + \sqrt{1 - x^2}| + \arcsin x + C$$
;

3. 
$$\sin x - \cos x + C$$
,  $(\sin x > 0; \cos x > 0)$ ;

4. 
$$\operatorname{arctg} x - \frac{1}{x} + C$$
;

5. 
$$X + \sin X + C$$
;

6. 
$$\frac{1}{\sqrt{7}} \arcsin x + C$$
;

7. 
$$\frac{3}{2}x^{\frac{2}{3}} + \frac{18}{7}x^{\frac{7}{6}} + \frac{9}{5}x^{\frac{5}{3}} + \frac{6}{13}x^{\frac{13}{6}} + C;$$

8. 
$$tgX + X + C$$
;

9. 
$$x + 2 \ln \left| \frac{x - 1}{+1} \right| + C$$
;

11. 
$$-\frac{2}{21} \left( -7x \right)^{\frac{3}{2}} + C;$$

13. 
$$-\frac{1}{5}$$
 (1-3 $x$ )  $\frac{5}{3}$  +  $C$ ;

15. 
$$\frac{1}{8}\ln|8x+13|+C$$
;

17. 
$$C - \ln|\cos x + 1|$$
;

19. 
$$\frac{3}{\sqrt{7}} \ln \left| \sqrt{7} x + \sqrt{7x^2 - 4} \right| + C$$
;

21. 
$$\frac{9}{2\sqrt{14}} \ln \left| \frac{\sqrt{2}x - \sqrt{7}}{\sqrt{2}x + \sqrt{7}} \right| + C;$$

23. 
$$\frac{1}{\sqrt{3}} \operatorname{arctg} \frac{\sqrt{3}x}{2} + C$$
;

25. 
$$C - \frac{1}{16} \cos^8 2x$$
;

27. 
$$\frac{1}{5} \arcsin^5 x + C$$
;

29. 
$$\frac{\sqrt{2}}{8} \ln \left| \frac{x^4 - \sqrt{2}}{x^4 + 2} \right| + C;$$

10. 
$$\frac{1}{\sqrt{3}} \ln \left| \sqrt{3} x + \sqrt{3 x^2 - 2} \right| + C$$
;

12. 
$$-\frac{1}{6}$$
  $(-9x)^2 + C$ ;

14. 
$$-\frac{1}{3}\ln|4-3x|+C$$
;

16. 
$$\frac{1}{32}$$
  $(x-3)^{+6} + C$ ;

18. 
$$\frac{1}{5}\cos(-5x) + C$$
;

20. 
$$\frac{1}{\sqrt{5}} \ln \left| \sqrt{5} x + \sqrt{5} x^2 + 3 \right| + C$$
;

22. 
$$\frac{1}{2\sqrt{6}} \ln \left| \frac{\sqrt{2} + \sqrt{3}x}{\sqrt{2} - \sqrt{3}x} \right| + C;$$

24. 
$$-\frac{1}{3 \ln (x+1)} + C$$
;

26. 
$$\frac{1}{2\text{ctg}^2 x} + C$$
;

28. 
$$\frac{4^{x}}{\ln^{4}} + 2\frac{6^{x}}{\ln 6} + \frac{9}{\ln 9} + C;$$

30. 
$$-\ln\left|\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1}\right| + C; \, < > 0$$

# 2.4. Интегрирование подстановкой (замена переменной)

Требуется вычислить интеграл  $\int f \, \langle \!\!\!/ \, \rangle \!\!\!/ z$ , который не является табличным. Суть метода подстановки состоит в том, что переменную хзаменяют переменной t по формуле  $x = \phi \, \langle \!\!\!\!/ \, \rangle$  тогда  $dx = \phi \, \langle \!\!\!\!/ \, \rangle \!\!\!/ t$ .

*Теорема 2.3.* Пусть функция  $x = \varphi$  определена и дифференцируема на некотором множестве 7 и пусть X - множество значений этой функции, на котором определена функция f Тогда, если на множестве X f имеет первообразную, то на множестве 7 справедлива формула:

$$\int f \langle \langle \mathcal{J} \rangle x = \int f \langle \langle \mathcal{J} \rangle \rangle \langle \mathcal{J} \rangle dt,$$

которая называется формулой замены переменой в неопределенном интеграле.

После вычисления интеграла следует вернуться к переменной x по формуле  $t = \varphi^{-1}$ 

При интегрировании заменой переменной нельзя дать общее правило выбора подстановки для любой функции. Однако это можно сделать только при интегрировании отдельных классов функций (тригонометрических, иррациональных и т.д.). Так, например, интегралы вида:

$$\int R\left(x, \sqrt{x^2 - a^2}\right) dx, \int R\left(x, \sqrt{a^2 - x^2}\right) dx, \int R\left(x, \sqrt{a^2 + x^2}\right) dx.$$

При помощи тригонометрических подстановок соответственно:

$$x = \frac{\partial}{\cos t}$$
 или  $x = \frac{\partial}{\sin t}$ ;  $x = \partial \cos t$  или  $x = \partial \sin t$ ;  $x = \partial \tan t$ 

#### Примеры

Вычислить интегралы при помощи подстановок.

1. 
$$\int x\sqrt{x+2} \, dx = \begin{vmatrix} \sqrt{x+2} = t; & x = t^2 - 2 \\ dx = 2t \, dt; & x = t^2 - 2 \end{vmatrix} = \int (-2) t^2 \, 2t \, dt = 2 \int (4 - 2t^2) \, dt = 2t \, dt + 2t \, dt = 2t \, dt + 2t \, dt = 2t \, dt$$

4. 
$$\int \frac{dx}{\sqrt{e^x + 1}} = \left| \sqrt{e^x + 1} = t; e^x = t^2 - 1, x = \ln \left( t^2 - 1 \right) \right| dx = \frac{2tdt}{t^2 - 1} = \int \frac{2tdt}{t^2 - 1} = 2\int \frac{dt}{t^2 - 1} = \frac{2tdt}{t^2 - 1}$$

$$= 2 \cdot \frac{1}{2} \ln \left| \frac{t-1}{t+1} \right| + C = \ln \left| \frac{\sqrt{e^x + 1} - 1}{\sqrt{e^x + 1} + 1} \right| + C;$$

5. 
$$\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx = \left| \sqrt{x} = t, \ x = t^2, \ dx = 2tdt \right| = \int \frac{\cos t \cdot 2tdt}{t} = 2\int \cot t dt = 2\sin t + C = 2\sin\sqrt{x} + C;$$

6. 
$$\int \frac{dx}{x^2 \sqrt{4 - x^2}} = \left| \frac{1}{x} = t; \ x = \frac{1}{t}; \ dx = -\frac{1}{t^2} dt \right| = -\int \frac{t^2 \cdot \frac{1}{t^2} dt}{\sqrt{4 - \frac{1}{t^2}}} = -\int \frac{t dt}{\sqrt{4t^2 - 1}} = -\frac{1}{2} \int \frac{dt^2}{\sqrt{4t^2 - 1}} = -\frac{1}{2} \int \frac{dt^2$$

$$= -\frac{1}{8} \int (t^2 - 1)^{\frac{1}{2}} d(t^2 - 1)^{\frac{1}{2}} - \frac{1}{8} (t^2 - 1)^{\frac{1}{2}} \cdot 2 + C = C - \frac{1}{4} \sqrt{\frac{4}{x^2} - 1};$$

7. 
$$\int \frac{dx}{x\sqrt{x^2 + x + 1}} = \left| \frac{1}{x} = t; x = \frac{1}{t}; dx = -\frac{1}{t^2} dt \right| = \int \frac{t\left(-\frac{1}{t^2}\right)dt}{\sqrt{\frac{t^2 + t + 1}{t^2}}} = -\int \frac{dt}{t\sqrt{\frac{t^2 + t + 1}{t^2}}} = -\int \frac$$

$$= -\int \frac{dt}{\sqrt{t^2 + t + 1}} = -\int \frac{dt}{\sqrt{\left(t + \frac{1}{2}\right)^2 + \frac{3}{4}}} = -\int \frac{dt}{\sqrt{\left(t + \frac{1}{2}\right)^2 + \frac{3}{4}}} = -\ln\left|t + \frac{1}{2} + \sqrt{t^2 + t + 1}\right| + C = -\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= -\ln\left|\frac{1}{x} + \frac{1}{2} + \sqrt{\frac{1}{x^2} + \frac{1}{x} + 1}\right| + C = -\ln\left|\frac{2 + x + \sqrt{x^2 + x + 1}}{x}\right| + C;$$

8. 
$$\int \sqrt{9 - x^2} \, dx = \left| x = 3\sin t; \, dx = 3\cos t \, dt, \sqrt{9 - 9\sin^2 t} = 3\cos t \, dt = \int 3\cos t \, dt = \int$$

$$=9\int \cos^2 t dt = 9\int \frac{1+\cos 2t}{2} dt = \frac{9}{2} \int dt + \int \cos 2t dt = \frac{9}{2} t + \frac{9}{4} \sin 2t + C =$$

$$= \left| x = 3\sin t \Rightarrow t = \arcsin\frac{x}{3} \right| = \frac{9}{2}\arcsin\frac{x}{3} + \frac{1}{2}x\sqrt{9 - x^2} + C;$$

9. 
$$\int \frac{\sqrt{x^2 - 1}}{x} dx = \begin{vmatrix} x = \frac{1}{\cos t}; dx = +\frac{\sin t}{\cos^2 t} dt \\ \sqrt{x^2 - 1} = \sqrt{\frac{1}{\cos^2 t}} - 1 = \frac{\sin t}{\cos t} \end{vmatrix} = \int \frac{\sin t \cdot \cos t \cdot \sin t}{\cos t \cdot \cos^2 t} dt = \int \frac{\sin^2 t}{\cos^2 t} dt = \int \frac{1 - \cos^2 t}{\cos^2 t} dt = \int \frac{dt}{\cos^2 t} - \int dt = \operatorname{tg} t - t + C, \text{ rge } t = \arccos \frac{1}{x};$$
10. 
$$\int \frac{\sqrt{1 + x^2}}{x^4} dx = \left| x = \operatorname{tg} t; dx = \frac{dt}{\cos^2 t}; \sqrt{1 + x^2} = \sqrt{1 + \operatorname{tg}^2 t} = \frac{1}{\cos t} \right| = \int \frac{1}{\cos t} \cdot \frac{dt}{\cos^2 t} \cdot \frac{dt}{\cos^2 t} = \int \frac{\cos^4 t}{\cos^3 t \cdot \sin^4 t} dt = \int \frac{\cos^4 t}{\sin^4 t} dt = \int \sin^{-4} t ds \ln t = \frac{\sin^{-3} t}{-3} + C = C - \frac{1}{3\sin^3 t}, \text{ rge } t = \operatorname{arctg} x.$$

#### 2.5. Интегрирование по частям

Пусть функции  $U = U \bigcirc V$  и  $V = V \bigcirc V$  — непрерывно дифференцируемые функции на некотором интервале, тогда имеет место формула  $\int U dV = UV - \int V dU$ , называемая формулой интегрирования по частям.

Метод интегрирования по частям удобно применять в следующих случаях:

- 1) Интегралы вида:  $\int P_n \, \langle \! \rangle \, e^{ax} \, dx$ ,  $\int P_n \, \langle \! \rangle \, \sin ax \, dx$ ;  $\int P_n \, \langle \! \rangle \, \cos ax \, dx$ , где  $P_n \, \langle \! \rangle \, -$  многочлен степени  $P_n \, \langle \! \rangle \, -$  число. В этих интегралах полагаем  $U = P_n \, \langle \! \rangle \, -$  и, применив интегрирование по частям  $P_n \, \partial \! \rangle \, -$  получаем результат.
- 2) Интегралы вида:  $\int P_n \mathbf{C}_n \mathbf{D} \mathbf{x} d\mathbf{x} d\mathbf{$ 
  - 3) Интегралы вида:  $\int e^{ax} \sin bx dx$ ,  $\int e^{ax} \cos bx dx$ , (*a*, *b* числа),  $\int \sin \mathbf{n} x \, dx$  и т.д. Эти интегралы вычисляются двукратным интегрированием по частям, после чего получается снова исходный интеграл с некоторым коэффициентом. Имеем

равенство, которое является линейным алгебраическим уравнением относительно искомого интеграла.

#### Примеры

1. 
$$\int \operatorname{arctg} x dx = \begin{vmatrix} u = \operatorname{arctg} x, \ dv = dx; \\ du = \frac{dx}{1+x^2}, \ v = x \end{vmatrix} = x \operatorname{arctg} x - \int \frac{x dx}{1+x^2} = x \operatorname{arctg} x - \frac{1}{2} \int \frac{d^2x}{1+x^2} dx = x \operatorname{arctg} x - \frac{1}{2} \operatorname{arctg} x$$

2. 
$$\int x^{2} e^{-x} dx = \begin{vmatrix} u = x^{2}; \ dv = e^{-x} dx \\ du = 2x dx; \ v = -e^{-x} \end{vmatrix} = -x^{2} e^{-x} - \int -e^{-x} 2x dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x e^{-x} dx = -x^{2} e^{-x} + 2 \int x$$

3. 
$$\int \ln (x + x^2) dx = \begin{vmatrix} u = \ln (x^2 + 1) dv = dx \\ du = \frac{2xdx}{x^2 + 1}, v = x \end{vmatrix} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^2) \int \frac{x \cdot 2xdx}{x^2 + 1} = x \ln (x + x^$$

$$-2\int \frac{(x^2+1)^2-1}{x^2+1} dx = x \ln (x+x^2)^2 2\int (1-\frac{1}{x^2+1}) dx = x \ln (x+x^2)^2 2\int dx + 2\int \frac{dx}{x^2+1} = x \ln (x+x^2)^2 2x + 2 \arctan (x+x^2)^2 2x$$

4. 
$$\int x \sin 7x dx = \begin{vmatrix} u = x, & dv = \sin 7x dx \\ du = dx, & v = -\frac{1}{7}\cos 7x \end{vmatrix} = -\frac{1}{7}x\cos 7x + \frac{1}{7}\int \cos 7x dx = -\frac{1}{7}x\cos 7x + \frac{1}{7}\int \cos 7x dx = -\frac{1}{7}x\cos 7x + \frac{1}{7}\int \cos 7x dx = -\frac{1}{7}\cos 7x + \frac{1}{7}\int \cos 7x dx = -\frac{1}{7}\cos 7x dx = -\frac{1}{7}\cos 7x + \frac{1}{7}\int \cos 7x dx = -\frac{1}{7}\cos 7x d$$

5. 
$$\int x^{3} e^{x^{2}} dx = \int x^{2} e^{x} x dx = \frac{1}{2} \int x^{2} e^{x^{2}} dx^{2} = \begin{vmatrix} u = x^{2}, dv = e^{x^{2}} dx^{2} \\ du = 2x dx, v = e^{x^{2}} \end{vmatrix} =$$

$$= \frac{1}{2} \left\{ e^{x^{2}} - 2 \int x e^{x^{2}} dx \right\} = \frac{1}{2} x^{2} e^{x^{2}} - \frac{1}{2} \int e^{x^{2}} dx^{2} = \frac{1}{2} x^{2} e^{x^{2}} - \frac{1}{2} e^{x^{2}} + C =$$

$$= \frac{1}{2} x^{2} e^{x^{2}} - \frac{1}{2} e^{x^{2}} + C = \frac{1}{2} e^{x^{2}} \left\{ e^{x^{2}} - 1 \right\} C;$$

6. 
$$\int \mathbf{Q}^{2} - 5x + 4 e^{-x} dx \Big|_{du = \mathbf{Q}^{2} - 5x + 4} = \mathbf{Q}^{2} - 5x + 4 e^{-x} dx \Big|_{du = \mathbf{Q}^{2} - 5x + 4} = \mathbf{Q}^{2} - 5x + 4 e^{-x} + 4 e^{-x} dx =$$

$$= \Big|_{du = 2x - 5, dv = e^{-x} dx} \Big|_{du = 2x - 5, dv = e^{-x} dx} = -\mathbf{Q}^{2} + 5x + 4 e^{-x} + 4 e^{-x} + 4 e^{-x} + 4 e^{-x} + 2 e^{-x} dx =$$

$$= -\mathbf{Q}^{2} + 5x + 4 e^{-x} - \mathbf{Q}^{2} x + 5 e^{-x} - 2 e^{-x} + C = C - e^{-x} \mathbf{Q}^{2} + 7x + 11;$$

$$7. \int \frac{x \cos x}{\sin^2 x} dx = \begin{vmatrix} u = x, \ dv = \frac{\cos x \, dx}{\sin^2 x} \\ du = dx, \ v = -\frac{1}{\sin x} \end{vmatrix} = -\frac{x}{\sin x} + \int \frac{dx}{\sin x} = -\frac{x}{\sin x} + \int \frac{dx}{2\sin \frac{x}{2}\cos \frac{x}{2}} = -\frac{x}{\sin x} + \int \frac{dx}{\sin x} = -\frac{x}{\sin x} = -\frac{x}{\sin x} + \int \frac{d$$

$$|\partial U = \partial x, V = -\frac{1}{\sin x}$$

$$+ \int \frac{\partial \left(\frac{x}{2}\right)}{\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} \cos^2 \frac{x}{2}} = -\frac{x}{\sin x} + \int \frac{\partial \left(\operatorname{tg} \frac{x}{2}\right)}{\operatorname{tg} \frac{x}{2}} = -\frac{x}{\sin x} + \ln\left|\operatorname{tg} \frac{x}{2}\right| + C;$$

8. 
$$\int \arccos x dx = \begin{vmatrix} u = \arccos x, \ dv = dx \\ du = -\frac{dx}{\sqrt{1 - x^2}}, \ v = x \end{vmatrix} = x \arccos x + \int \frac{x dx}{\sqrt{1 - x^2}} = x \arccos x - \frac{x}{\sqrt{1 - x^2}} = x \arcsin x - \frac{x}{\sqrt{1 - x^2}} = x - \frac{x}{\sqrt{1 - x}} = x - \frac$$

$$-\frac{1}{2}\int (-x^2)^{\frac{1}{2}}d(-x^2) = x\arccos x - \frac{1}{2}(-x^2)^{\frac{1}{2}} \cdot 2 + C = x\arccos x - \sqrt{1-x^2} + C;$$

9. 
$$\int \sin \ln x dx = \begin{vmatrix} u = \sin \ln x, \ dv = dx \\ du = \cos \ln x \cdot \frac{1}{x} dx, \ v = x \end{vmatrix} = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin \ln x - \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}{x} dx = x \sin x + \int x \cosh x \cdot \frac{1}$$

$$= x \sin \ln x - x \cosh x - \int \sin \ln x dx;$$

Имеем уравнение относительно  $\int \sin \ln x dx$ .

$$\int \sinh x dx = x \left( \sinh x - \cosh x \right) \int \sinh x dx;$$

$$2\int \sinh x dx = X \left( \sinh x - \cosh x \right)$$

$$\int \sinh x dx = \frac{1}{2} x \left( \sinh x - \cosh x \right) + C;$$

10. 
$$\int e^{ax} \cos bx dx = \begin{vmatrix} u = e^{ax}, & dv = \cos bx dx \\ du = ae^{ax} dx, & v = \frac{1}{b} \sin bx \end{vmatrix} = \frac{1}{6} e^{ax} \sin bx - \frac{a}{b} \int e^{ax} \sin bx dx = \frac{1}{b} e^{ax} \sin bx = \frac{1}{b} e$$

$$= \begin{vmatrix} u = e^{ax}, dv = \sin bx dx \\ du = ae^{ax} dx, v = -\frac{1}{b} \cos bx \end{vmatrix} = \frac{1}{b} e^{ax} \sin bx - \frac{a}{b} \left( -\frac{1}{b} e^{ax} \cos bx + \frac{a}{b} \int e^{ax} \cos bx dx \right) = \frac{1}{b} e^{ax} \cos bx + \frac{a}{b} \int e^{ax} \cos bx dx dx$$

$$= \frac{1}{b} e^{ax} \sin bx + \frac{\partial}{\partial x} e^{ax} \cos bx - \frac{\partial^2}{\partial x^2} \int e^{ax} \cos bx dx;$$

Имеем 
$$\int e^{ax} \cos bx dx = \frac{1}{b} e^{ax} \left( \sin bx + \frac{\partial}{\partial b} \cos bx \right) - \frac{\partial^2}{\partial^2} \int e^{ax} \cos bx dx$$
, или

$$\int e^{ax} \cos bx dx + \frac{a^2}{b^2} \int e^{ax} \cos bx dx = \frac{1}{b} e^{ax} \left( \sin bx + \frac{a}{b} \cos bx \right)$$

$$\frac{b^2 + a^2}{b^2} \int e^{ax} \cos bx dx = \frac{1}{b} e^{ax} \left( \sin bx + \frac{a}{b} \cos bx \right) \Rightarrow \int e^{ax} \cos bx dx =$$

$$= \frac{1}{b} e^{ax} \left( \frac{b \sin bx + a \cos bx}{b} \right) : \frac{b^2 + a^2}{b^2};$$

$$\int e^{ax} \cos bx dx = \frac{1}{a^2 + b^2} e^{ax} \left( \sin bx + a \cos bx \right) + C.$$

### 2.6. Задачи для самостоятельной работы

Вычислить интегралы, используя замену переменной.

$$1. \int x\sqrt{3-5x} dx;$$

2. 
$$\int x + 2 dx$$
;

$$3. \int \frac{\sqrt{x^2 - 1}}{x} dx;$$

$$4. \int \frac{1-2\sqrt{x}}{1+\sqrt{x}} dx;$$

$$5. \int \frac{x}{\sqrt[3]{x+3}} \, dx;$$

6. 
$$\int \frac{dx}{3^x + 1};$$

$$7. \int \frac{e^{\sqrt{x}} dx}{\sqrt{x}};$$

8. 
$$\int \frac{\sin x dx}{\sqrt{1 + 2\cos x}};$$

9. 
$$\int \frac{dx}{x\sqrt{1+x^2}};$$

$$10. \int \frac{dx}{x\sqrt{1-4\ln^2 x}}.$$

Вычислить интегралы с помощью интегрирования по частям.

11. 
$$\int \sqrt{x} \ln x dx$$
;

13. 
$$\int x \operatorname{arctg2} x dx$$
;

15. 
$$\int \frac{x\cos x}{\sin^2 x} dx;$$

$$19. \int e^{2x} \sin x dx;$$

12. 
$$\int e^{-x} (x^2 + 4) dx$$
;

14. 
$$\int X^2 3^x dX$$
;

16. 
$$\int x \sin 2x dx$$
;

18. 
$$\int \ln^3 x dx$$
;

$$20. \int \frac{\sqrt{1+x^2}}{x^2} \, dx.$$

Ответы

1. 
$$-\frac{2}{25}\sqrt{(5-5x)}(\frac{2}{5}+x)+C$$
;

3. 
$$\operatorname{tg}\left(\operatorname{arccos}\frac{1}{x}\right) - \operatorname{arccos}\frac{1}{x} + C$$
;

5. 
$$\sqrt[3]{4+3} \left(\frac{3}{5}x - \frac{27}{10}\right) + C;$$

7. 
$$2e^{\sqrt{\chi}} + C$$
:

9. 
$$\ln \left| \frac{\chi}{1 + \sqrt{\chi^2 + 1}} \right| + C;$$

11. 
$$\frac{2}{3}x^{\frac{3}{2}}\left(\ln x - \frac{2}{3}\right) + C;$$

13. 
$$\left(\frac{x^2}{2} + \frac{1}{8}\right) \arctan 2x - \frac{1}{4}x + C;$$

15. 
$$-\frac{x}{\sin x} + \ln \left| \lg \frac{x}{2} \right| + C;$$

17. 
$$x \arccos x - \sqrt{1 - x^2} + C$$
;

19. 
$$e^{2x} \left( \frac{2}{3} \sin x - \frac{1}{3} \cos x \right) + C;$$

2. 
$$\P + 2 \Im \left( \frac{1}{12} x - \frac{1}{66} \right) + C;$$

4. 
$$-2x + 6\sqrt{x} - 6\ln\left|\sqrt{x} + 1\right| + C$$
;

6. 
$$\frac{1}{\ln 3} \ln \left( \frac{3^x}{3^x + 1} \right) + C;$$

8. 
$$-\sqrt{1+2\cos x} + C$$
;

10. 
$$\frac{1}{2} \arcsin \mathbb{Q} \ln x \rightarrow C$$
;

12. 
$$-e^{-x} (2 + 2x + 6) + C$$
;

14. 
$$\frac{1}{\ln 3} 3^{x} \left( x^{2} - \frac{2x}{\ln 3} + \frac{2}{\ln^{2} 3} \right) + C;$$

16. 
$$\frac{1}{16}\sin 2x - \frac{x}{8}\cos 2x + C$$
;

18. 
$$\chi \ln^3 \chi - 3 \ln^2 \chi + 6 \ln \chi - 6 + C$$
;

20. 
$$-\frac{\sqrt{1+x^2}}{x} + \ln\left|x + \sqrt{1+x^2}\right| + C$$
.

## 2.7. Интегрирование рациональных дробей с помощью разложения их на простейшие дроби

Рациональной дробью называется дробь вида  $\frac{P_m(x)}{Q_n(x)}$ , где  $P_m(x)$ ,  $Q_n(x)$  –

многочлены. Рациональная дробь называется правильной, если степень числителя меньше степени знаменателя, т.е. m < n; в противном случае (если  $m \ge n$ ) рациональная дробь называется неправильной.

Простейшей дробью называется правильная дробь одного из следующих четырёх типов:

1) 
$$\frac{A}{x-a}$$
;

2) 
$$\frac{A}{(x-a)^k}$$
  $(k \ge 2, k \in \mathbb{N});$ 

3) 
$$\frac{Mx + N}{x^2 + px + q}$$
 (корни знаменателя комплексные, т.е.  $p^2 - 4q < 0$ );

4) 
$$\frac{Mx + N}{(x^2 + px + q)^k}$$
 ( $k \ge 2$ , корни знаменателя комплексные),

где A, a, M, N, p, q – действительные числа.

*Теорема 2.4.* Всякую правильную рациональную дробь  $\frac{P_m(x)}{Q_n(x)}$ , знаменатель

которой разложен на множители

$$Q_{p}(x) = (x - x_{1})^{k_{1}} (x - x_{2})^{k_{2}} ... (x^{2} + p_{1}x + q_{1})^{S_{1}} ... (x^{2} + p_{m}x + q_{m})^{S_{m}}$$

можно представить (и притом единственным образом) в виде следующей суммы простейших дробей:

$$\frac{P_m(x)}{Q_n(x)} = \frac{A_1}{x - x_1} + \frac{A_2}{(x - x_1)^2} + \dots + \frac{A_{k_1}}{(x - x_1)^{k_1}} + \frac{B_1}{x - x_1} + \frac{B_2}{(x - x_2)^2} + \dots + \frac{B_{k_2}}{(x - x_2)^{k_2}} + \dots$$

$$... + \frac{C_1 X + D_1}{X^2 + \rho_1 X + q_1} + \frac{C_2 X + D_2}{(X^2 + \rho_1 X + q_1)^2} + ... + \frac{C_{S_1} X + D_{S_1}}{(X^2 + \rho_1 X + q_1)^{S_1}} + ... + \frac{M_1 X + N_1}{X^2 + \rho_m X + q_m} +$$

$$+\frac{M_{2}X+N_{2}}{(X^{2}+\rho_{m}X+Q_{m})^{2}}+...+\frac{M_{S_{m}}X+N_{S_{m}}}{(X^{2}+\rho_{m}X+Q_{m})^{S_{m}}},$$

где  $A_1, A_2,...,B_1, B_2,...,C_1, D_1,...,M_1, N_1,...$  - некоторые действительные числа.

Поясним формулировку теоремы на следующих примерах:

1) 
$$\frac{x^2+4}{(x-2)(x-3)^3} = \frac{A}{x-2} + \frac{B}{x-3} + \frac{C}{(x-3)^2} + \frac{D}{(x-3)^3}$$
;

2) 
$$\frac{x^3+1}{x^2(x^2+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{x^2+1}$$
;

3) 
$$\frac{7x^2 + 8x + 9}{(x - 1)(x - 2)(x^2 + x + 1)^2} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{Cx + D}{x^2 + x + 1} + \frac{Mx + N}{(x^2 + x + 1)^2}.$$

Перед интегрированием рациональной дроби  $\frac{P_m(x)}{Q_n(x)}$  необходимо выполнить следующие алгебраические преобразования и вычисления:

- 1) Если дана неправильная рациональная дробь, выделить из неё целую часть, т.е. представить эту дробь в виде  $\frac{P_m(x)}{Q_n(x)} = M(x) + \frac{P_1(x)}{Q_n(x)}$ , где M(x) многочлен,  $\frac{P_1(x)}{Q_n(x)}$  правильная рациональная дробь.
- 2) Разложить знаменатель дроби на линейные и квадратичные множители:  $Q(x) = (x a)^m (x b)...(x^2 + px + q)^r...$ , где квадратичные множители имеют комплексные корни.
  - 3) Правильную рациональную дробь разложить на простейшие дроби.
- 4) Вычислить неопределённые коэффициенты  $A_1$ ,  $A_2$ ,..., $A_{k_1}$ ,  $B_1$ ,  $B_2$ ,..., $B_{k_2}$ ,  $C_1$ ,  $C_2$ ,..., $C_{S_1}$ ,  $D_1$ ,  $D_2$ ,..., $M_1$ ,  $M_2$ ,..., $M_{S_m}$ ,  $N_1$ ,  $N_2$ ,..., $N_{S_m}$ , для чего привести последнее равенство к общему знаменателю, приравнять в числителе коэффициенты при одинаковых степенях X в левой и правой частях полученного тождества и решить систему линейных уравнений относительно искомых коэффициентов. В результате интегрирование рациональной дроби сведётся к нахождению интегралов от многочлена и от простейших рациональных дробей.

#### Примеры

1. Найти 
$$\int \frac{2x^2 - 1}{x^3 - 5x^2 + 6x} dx$$
.

**Решение.** Разложим на множители знаменатель подынтегрального выражения:  $x^3 - 5x^2 + 6x = x(x^2 - 5x + 6) = x(x - 2)(x - 3)$ . Так как каждый из множителей x, x - 2, x - 3 входит в знаменатель в первой степени, то данная правильная рациональная дробь может быть представлена в виде суммы простейших дробей типа  $\frac{2x^2 - 1}{x(x - 2)(x - 3)} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{x - 3}$ .

Освободившись от знаменателей, получим:

$$2x^2 - 1 = A(x^2 - 5x + 6) + B(x^2 - 3x) + C(x^2 - 2x)$$
.

Сгруппируем члены при одинаковых степенях x:  $2x^2 - 1 = (A + B + C)x^2 + (-5A - 3B - 2C)x + 6A$ .

Сравнивая коэффициенты при одинаковых степенях X, получаем систему уравнений:

$$\begin{cases} A + B + C = 2 & B = -\frac{7}{2} \\ -5A - 3B - 2C = 0 & \Rightarrow C = \frac{17}{3} \\ 6A = -1 & A = -\frac{1}{6} \end{cases}$$

Итак,

$$\int \frac{2x^2 - 1}{x(x - 2)(x - 3)} dx = -\frac{1}{6} \int \frac{dx}{x} - \frac{7}{2} \int \frac{dx}{x - 2} + \frac{17}{3} \int \frac{dx}{x - 3} =$$

$$= -\frac{1}{6} \ln|x| - \frac{7}{2} \ln|x - 2| + \frac{17}{3} \ln|x - 3| + C.$$

2. Найти 
$$\int \frac{x^4 + 3x^3 + 3x^2 - 5}{x^3 + 3x^2 + 3x + 1} dx$$
.

**Решение.** Выделим целую часть данной неправильной рациональной дроби, разделив её числитель на знаменатель по правилу деления многочленов. Тогда

$$\int \frac{x^4 + 3x^3 + 3x^2 - 5}{x^3 + 3x^2 + 3x + 1} dx = \int \left(x - \frac{x + 5}{x^3 + 3x^2 + 3x + 1}\right) dx = \int \left(x - \frac{x + 5}{(x + 1)^3}\right) dx =$$

$$= \frac{x^2}{2} - \int \frac{(x + 1) + 4}{(x + 1)^3} dx = \frac{x^2}{2} - \int \frac{dx}{(x + 1)^2} - 4\int \frac{dx}{(x + 1)^3} = \frac{x^2}{2} - \frac{(x + 1)^{-1}}{-1} - \frac{4(x + 1)^{-2}}{-2} + C =$$

$$= \frac{x^2}{2} - \frac{1}{1 + x} - \frac{2}{(1 + x)^2} + C.$$

3. Найти интеграл  $\int \frac{x^2 - x}{(x+1)^9} dx$ , не применяя метода неопределённых коэффициентов.

**Решение.** Подынтегральная функция является правильной рациональной дробью, поэтому можно было бы найти интеграл, представив эту дробь в виде суммы простейших дробей. Однако нахождение интеграла можно значительно упростить, если произвести замену переменной x+1=t, тогда x=t-1, dx=dt. Находим

$$\int \frac{x^2 - x}{(x+1)^9} dx = \begin{vmatrix} x+1 = t, & x = t-1 \\ dx = dt \end{vmatrix} = \int \frac{(t-1)^2 - t + 1}{t^9} dt = \int \frac{t^2 - 3t + 2}{t^9} dt =$$

$$= \int (t^{-7} - 3t^{-8} + 2t^{-9}) dt = \frac{t^{-6}}{-6} - \frac{3t^{-7}}{-7} + \frac{2t^{-8}}{-8} + c = -\frac{1}{6t^6} + \frac{3}{7t^7} - \frac{1}{4t^8} + c, \text{ где } t = x + 1.$$

## 2.8. Задачи для самостоятельного решения

1. 
$$\int \frac{11x+16}{(x-1)(x+2)^2} dx;$$
2. 
$$\int \frac{5x-14}{x^3-x^2-4x+4} dx;$$
3. 
$$\int \frac{dx}{x^3+x^2+2x+2};$$
4. 
$$\int \frac{dx}{x^2-8};$$
5. 
$$\int \frac{7x-15}{x^3-2x^2+5x} dx;$$
6. 
$$\int \frac{x+1}{x^4+4x^2+4} dx;$$
7. 
$$\int \frac{x+1}{(x^2+1)(x^2+1)} dx;$$
8. 
$$\int \frac{5x^3-17x^2+18x-5}{(x-1)^3(x-2)} dx;$$

9. 
$$\int \frac{dx}{(x^2+1)(x^2-1)}$$
;

11. 
$$\int \frac{x^2 dx}{1 - x^4}$$
;

13. 
$$\int \frac{x^5 + 2x^3 + 4x + 4}{x^4 + 2x^3 + 2x^2} dx;$$

15. 
$$\int \frac{(x+1)^3}{x^3-1} dx$$
;

17. 
$$\int \frac{x^2 dx}{(x+2)^2 (x+4)^2};$$

19. 
$$\int \frac{dx}{(x^2-4x+3)(x^2+4x+5)}$$
;

21. 
$$\int \frac{5x^3 + 2}{x^3 - 5x^2 + 4x} dx;$$

23. 
$$\int \frac{dx}{6x^3 - 7x^2 - 3x}$$
;

25. 
$$\int \frac{3x^4 + 4}{x^2(x^2 + 1)^3} dx;$$

27. 
$$\int \frac{x^2 - x + 14}{(x - 4)^3 (x - 2)} dx;$$

29. 
$$\int \frac{3x^3 - x^2 - 4x + 13}{x^2(x^2 - 4x + 13)} dx;$$

10. 
$$\int \frac{x^5 dx}{(x-1)^2 (x^2-1)}$$
;

12. 
$$\int \frac{x^4 + 1}{x^3 - x^2 + x - 1} dx;$$

14. 
$$\int \frac{x-4}{(x-2)(x^2+1)} dx$$
;

16. 
$$\int \frac{5x^3 + 9x^2 - 22x - 8}{x^3 - 4x} dx;$$

18. 
$$\int \frac{dx}{x^3(x-1)^2}$$
;

20. 
$$\int \frac{x^4 dx}{x^4 - 1}$$
;

22. 
$$\int \frac{x^3 + x + 1}{x(x^2 + 1)} dx$$
;

24. 
$$\int \frac{xdx}{x^4 - 3x^2 + 2}$$
;

26. 
$$\int \frac{dx}{x^3 - 4x^2 + 5x - 2}$$
;

28. 
$$\int \frac{x^3 - 2x + 2}{(x-1)^2 (x^2 + 1)} dx;$$

30. 
$$\int \frac{x^3 + 3}{(x+1)(x^2+1)^2} dx.$$

#### Ответы

1. 
$$3 \ln \left| \frac{(x-1)}{x+2} \right| - \frac{2}{x+2} + C;$$

3. 
$$\frac{1}{3} \ln \frac{|x+1|}{\sqrt{x^2+2}} + \frac{1}{3\sqrt{2}} \arctan \frac{x}{\sqrt{2}} + C;$$

2. 
$$\ln \left| \frac{(x-1)^3}{(x+2)^2(x-2)} \right| + C;$$

3. 
$$\frac{1}{3} \ln \frac{|x+1|}{\sqrt{x^2+2}} + \frac{1}{3\sqrt{2}} \operatorname{arctg} \frac{x}{\sqrt{2}} + C;$$
 4.  $\frac{1}{24} \ln \frac{(x-2)^2}{x^2+2x+4} - \frac{1}{4\sqrt{3}} \operatorname{arctg} \frac{x+1}{\sqrt{3}} + C;$ 

5. 
$$3\ln\frac{\sqrt{x^2-2x+5}}{|x|} + 2\arctan\frac{x-1}{2} + C;$$
 6.  $\frac{x-2}{4(x^2+2)} + \frac{\sqrt{2}}{8}\arctan\frac{x}{\sqrt{2}} + C;$ 

6. 
$$\frac{x-2}{4(x^2+2)} + \frac{\sqrt{2}}{8} \operatorname{arctg} \frac{x}{\sqrt{2}} + C$$

7. 
$$\frac{1}{16} \ln \frac{x^2 + 1}{x^2 + 9} + \frac{1}{8} \operatorname{arctg} x - \frac{1}{24} \operatorname{arctg} \frac{x}{3} + C;$$

8. 
$$\frac{1}{2(x-1)^2} + 2\ln|x-1| + 3\ln|x-2| + C$$
; 9.  $\frac{1}{4}\ln\left|\frac{x-1}{x+1}\right| - \frac{1}{2}\arctan(x+C)$ ;

9. 
$$\frac{1}{4} \ln \left| \frac{x-1}{x+1} \right| - \frac{1}{2} \operatorname{arctg} x + C$$
;

10. 
$$\frac{(x+2)^2}{2} - \frac{1}{4(x-1)^2} - \frac{9}{4(x-1)} + \frac{31}{8} \ln|x-1| + \frac{1}{8} \ln|x+1| + C;$$

11. 
$$\frac{1}{4} \ln \left| \frac{1+x}{1-x} \right| - \frac{1}{2} \operatorname{arctg} x + C;$$

12. 
$$\frac{(x+1)^2}{2} + \ln \frac{|x-1|}{\sqrt{x^2+1}} - \arctan x + C;$$

13. 
$$\frac{x^2}{2} - 2x - \frac{2}{x} + 2\ln(x^2 + 2x + 2) - 2\arctan(x+1) + C$$
;

14. 
$$\frac{1}{2}$$
(9arctg $x$  + ln  $\frac{x^2 + 1}{(x - 2)^2}$  +  $C$ ;

15. 
$$x + \frac{1}{\sqrt{3}} \operatorname{arctg} \frac{2x+1}{\sqrt{3}} + \frac{1}{3} \ln \left( \sqrt[8]{x^2 + x + 1} \right) + C;$$

16. 
$$5x + 2\ln|x| + 3\ln|x - 2| + 4\ln|x + 2| + C$$
;

17. 
$$-\frac{1}{(x+2)} - \frac{4}{(x+4)} + 2 \ln \left| \frac{(x+4)}{(x+2)} \right| + C;$$

18. 
$$-\frac{1}{2x^2} - \frac{2}{x} - \frac{1}{(x-1)} + 3\ln\left|\frac{x}{x-1}\right| + C$$
;

19. 
$$\frac{1}{52}\ln|x-3| - \frac{1}{20}\ln|x-1| + \frac{1}{65}\ln(x^2 + 4x + 5) + \frac{7}{130}\arctan(x+2) + C;$$

20. 
$$x + \frac{1}{4} \ln \left| \frac{x-1}{x+1} \right| - \frac{1}{2} \operatorname{arctg} x + C;$$

20. 
$$x + \frac{1}{4} \ln \left| \frac{x-1}{x+1} \right| - \frac{1}{2} \operatorname{arctg} x + C;$$
 21.  $5x + \ln \left| \frac{x^{\frac{1}{2}} (x-4)^{\frac{161}{6}}}{(x-1)^{\frac{7}{3}}} \right| + C;$ 

22. 
$$5x + \ln \left| \frac{x^{\frac{1}{2}}(x-4)^{\frac{161}{6}}}{(x-1)^{\frac{7}{3}}} \right| + C;$$

23. 
$$\frac{3}{11}\ln|3x+1| + \frac{2}{33}\ln|2x-3| - \frac{1}{3}\ln|x| + C$$
;

24. 
$$\ln \sqrt{\frac{x^2 - 2}{x^2 - 1}} + C;$$
 25.  $-\frac{57}{8} \arctan (x^2 + 103x^2 + 32) + C;$ 

26. 
$$\frac{1}{x-1} + \ln \left| \frac{x-2}{x-1} \right| + C;$$
 27.  $-\frac{13}{2(x-4)^2} + \frac{3}{x-4} + 2\ln \left| \frac{x-4}{x-2} \right| + C;$ 

28. 
$$-\frac{1}{2(x-1)} + \frac{1}{2} \ln(x^2+1) + \frac{3}{2} \arctan x + C;$$

29. 
$$-\frac{1}{x} + \frac{3}{2} \ln \left| x^2 - 4x + 13 \right| + \frac{4}{3} \arctan \left| x - \frac{x - 2}{3} + C \right|$$

30. 
$$\frac{x+2}{2(x^2+1)} + \frac{1}{2} \ln|x+1| - \frac{1}{4} \ln(x^2+1) + 2 \arctan x + C$$
.

# 2.9. Интегрирование тригонометрических выражений с помощью подстановок и формул тригонометрии

Интегрирование тригонометрических выражений с помощью подстановок. Условимся через R(u, v) обозначать рациональную функцию относительно u, v, т.е. выражение, которое получено из любых величин u, v с помощью четырёх арифметических действий.

Рассмотрим интегралы вида  $\int R(\sin x, \cos x) dx$ , где R – рациональная функция аргументов  $\sin x$  и  $\cos x$ . Такие интегралы приводятся к интегралам от рациональных функций, т.е. рационализируются с помощью универсальной тригонометрической подстановки  $t = tg \frac{x}{2}$ . В результате этой подстановки имеем:

$$\sin x = \frac{2 \operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}} = \frac{2t}{1 + t^2}; \qquad \cos x = \frac{1 - \operatorname{tg}^2 \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}} = \frac{1 - t^2}{1 + t^2}; \qquad x = 2 \operatorname{arctg} t; \qquad dx = \frac{2 dt}{1 + t^2};$$

$$\int R(\sin x, \cos x) \, dx = \int R\left(\frac{2t}{1+t^2}; \frac{1-t^2}{1+t^2}\right) \frac{2 \, dt}{1+t^2}.$$

Универсальная подстановка  $t = tg \frac{\chi}{2}$  во многих случаях приводит к сложным вычислением, так как при её применении  $\sin \chi$  и  $\cos \chi$  выражаются через t в виде рациональных дробей, содержащих  $t^2$ .

В некоторых случаях нахождение интегралов вида  $\int R(\sin x; \cos x) dx$  можно осуществить с помощью других подстановок. Укажем эти случаи:

- 1. Если  $R(\sin x, \cos x)$  чётная функция относительно  $\sin x$ ,  $\cos x$ , т.е.  $R(-\sin x, -\cos x) = R(\sin x, \cos x)$ , то интегралы рационализируются подстановкой t = tgx. При этом используются формулы:  $\sin^2 x = \frac{tg^2 x}{1 + tg^2 x}$ ;  $\cos^2 x = \frac{1}{1 + tg^2 x}$ .
- 2. Если  $R(\sin x, \cos x)$  нечётная функция относительно  $\sin x$ ; т.е.  $R(-\sin x, \cos x) = -R(\sin x, \cos x)$ , то интегралы  $\int R(\sin x, \cos x) dx$  рационализируются с помощью подстановки  $t = \cos x$ .
- 3. Если  $R(\sin x, \cos x)$  нечётная функция относительно  $\cos x$ , т.е.  $R(\sin x, -\cos x) = -R(\sin x, \cos x)$ , то интегралы  $\int R(\sin x, \cos x) dx$  рационализируются с помощью подстановки  $t = \sin x$ .
- 4. Интегралы  $\int R(tgx) dx$  приводятся к рациональному виду с помощью подстановки t = tgx.
- 5. Интегралы  $\int R(\text{ctg}x) dx$  приводятся к рациональному виду с помощью подстановки t = ctgx.

### Примеры

1. Найти интеграл с помощью тригонометрической подстановки:  $\int \frac{dx}{4\sin^2 x - 7\cos^2 x}.$ 

**Решение.** Так как выполняется условие  $R(-\sin x, -\cos x) = R(\sin x, \cos x)$ , то применяем подстановку  $t = \lg x$ 

$$\int \frac{dx}{4\sin^2 x - 7\cos^2 x} = \begin{vmatrix} \log x = t, & x = \operatorname{arctg}t, & dx = \frac{dt}{1 + t^2} \\ \sin^2 x = \frac{t^2}{1 + t^2}, & \cos^2 x = \frac{1}{1 + t^2} \end{vmatrix} = \int \frac{dt}{(1 + t^2)^2 + t^2} = \int \frac{dt}{1 + t^2} = \int \frac{dt}{(2t)^2 - (\sqrt{7})^2} = \frac{1}{4\sqrt{7}} \ln \left| \frac{2t - \sqrt{7}}{2t + \sqrt{7}} \right| + C, \quad \text{где } t = \operatorname{tg}x.$$

2. Вычислить интеграл  $\int \frac{\cos^5 x dx}{\sin^6 x}$ .

**Решение.** Так как выполняется условие  $R(\sin x, -\cos x) = -R(\sin x, \cos x)$ , то применив подстановку  $t = \sin x$ , имеем

$$\int \frac{\cos^5 x dx}{\sin^6 x} = \begin{vmatrix} t = \sin x, & dt = \cos x dx \\ \cos^2 x = 1 - t^2 \end{vmatrix} = \int \frac{(-t^2)^2}{t^2} dt = \int \frac{1 - 2t^2 + t^4}{t^6} dt = \int \frac{(-t^2)^2}{t^6} dt = \int \frac{1 - 2t^2 + t^4}{t^6} dt = \int \frac{(-t^2)^2}{t^6} dt = \int \frac{(-t^2)^2}{t^6} dt = \int \frac{1 - 2t^2 + t^4}{t^6} dt = \int \frac{(-t^2)^2}{t^6} dt = \int \frac{(-t^2)^$$

Интегрирование тригонометрических выражений с помощью тригонометрических формул.

Рассмотрим следующие случаи:

1. Интегралы вида  $\int \sin mx \cos nx dx$ ,  $\int \cos mx \cos nx dx$ ,  $\int \sin mx \sin nx dx$  находят с помощью формул тригонометрии:

$$\sin mx \cos nx = \frac{1}{2} \left( \sin(m-n)x + \sin(m+n)x \right)$$

$$\cos mx \cos nx = \frac{1}{2} \left( \cos(m-n)x + \cos(m+n)x \right)$$

$$\sin mx \sin nx = \frac{1}{2} \left( \cos(m-n)x - \cos(m+n)x \right)$$

2. Интегралы вида  $\int \sin^m x \cos^n n dx$ ,  $m, n \in \mathbb{N}$ , находят при нечётном n с помощью подстановки  $t = \sin x$ , при нечётном m - с помощью подстановки  $t = \cos x$ . Если же m и n - чётные положительные числа, то подынтегральную функцию необходимо преобразовать с помощью формул тригонометрии:

$$\sin x \cos x = \frac{1}{2} \sin 2x,$$

$$\sin^2 x = \frac{1}{2} (1 - \cos 2x),$$

$$\cos^2 x = \frac{1}{2} (1 + \cos 2x).$$

- 3. Интегралы вида  $\int tg^m x dx$ ,  $\int ctg^m x dx$ , где  $m \in \mathbb{N}$ , находят с помощью формул:  $tg^2 x = \frac{1}{\cos^2 x} 1$ ,  $ctg^2 x = \frac{1}{\sin^2 x} 1$ , последовательно понижая степень тангенса или котангенса.
- 4. Интегралы вида  $\int tg^m x \frac{1}{\cos^n x} dx$ ,  $\int ctg^m x \frac{1}{\sin^n x} dx$ , где n целое чётное положительное число и интегралы вида  $\int \frac{dx}{\sin^{2n} x}$ ,  $\int \frac{dx}{\cos^{2m} x}$ , где m, n целые положительные числа, находят с помощью формул:  $tg^2 x = \frac{1}{\cos^2 x} 1$ ,  $ctg^2 x = \frac{1}{\sin^2 x} 1$ .

### Примеры

1. Вычислить  $\int tg^6 x \frac{1}{\cos^4 x} dx$ .

**Решение.** Применяя формулу  $\frac{1}{\cos^2 x} = 1 + tg^2 x$ , получаем

$$\int tg^{6} x \frac{1}{\cos^{4} x} dx = \int tg^{6} x (1 + tg^{2} x) \frac{dx}{\cos^{2} x} = \int tg^{6} x (1 + tg^{2} x) d(tgx) =$$

$$= \int tg^{6} x d(tgx) + \int tg^{8} x d(tgx) = \frac{tg^{7} x}{7} + \frac{tg^{9} x}{9} + C.$$

2. Вычислить  $\int \frac{dx}{\sin^6 x}$ .

# **Решение.** Используя формулу $\frac{1}{\sin^2 \chi} = 1 + \operatorname{ctg}^2 \chi$ , имеем

$$\int \frac{dx}{\sin^6 x} = \int \left(\frac{1}{\sin^2 x}\right)^2 \frac{dx}{\sin^2 x} = -\int (1 + \cot^2 x)^2 d(\cot x) = -\int (1 + 2\cot^2 x + \cot^4 x) d(\cot x) =$$

$$= -\cot x - \frac{2}{3}\cot^3 x - \frac{1}{5}\cot^5 x + C.$$

### 2.10. Задачи для самостоятельного решения

$$1. \int \frac{dx}{2\sin x + \sin 2x};$$

$$3. \int \frac{dx}{3 + \cos x};$$

$$5. \int \frac{dx}{\cos^4 x};$$

7. 
$$\int \frac{dx}{5 + 4\sin x}$$
;

9. 
$$\int \frac{dx}{\mathsf{tg}^8 x};$$

11. 
$$\int \sin^8 x dx$$
;

13. 
$$\int \cos 2x \cos 3x dx$$
;

15. 
$$\int \frac{dx}{(tg^2x - 5tgx)\cos^2 x};$$

17. 
$$\int \frac{dx}{8 - 4\sin x + 7\cos x};$$

19. 
$$\int \frac{dx}{3\sin x - 4\cos x};$$

$$21. \int \frac{dx}{5 + \sin x + 3\cos x};$$

$$2. \int \frac{1 + tgx}{\sin 2x} dx;$$

4. 
$$\int \frac{dx}{(\sin x + \cos x)^2};$$

6. 
$$\int \frac{dx}{3 - 2\sin x + \cos x};$$

8. 
$$\int \frac{dx}{\sin^3 x \cos^3 x};$$

10. 
$$\int \frac{\cos x dx}{\sin^3 x - \cos^3 x};$$

12. 
$$\int \frac{\cos x dx}{(1-\cos x)^2};$$

$$14. \int \frac{1+\sin x}{1-\sin x} dx;$$

16. 
$$\int \frac{\sin x + \cos x}{3 + \sin 2x} dx;$$

18. 
$$\int \frac{dx}{\sin^2 x - 4\sin x \cos x + 5\cos^2 x};$$

20. 
$$\int \frac{\sin x dx}{1 + \tan x};$$

22. 
$$\int \frac{\sin^3 x dx}{\cos x - 3};$$

$$23. \int \frac{dx}{3\cos^2 x + 4\sin^2 x};$$

24. 
$$\int \cos^5 x \sin^2 x dx$$
;

$$25. \int \frac{\cos^3 x}{4\sin^2 x - 1} dx;$$

26. 
$$\int \cos x \cos 2x dx$$
;

27. 
$$\int (tg^2 x + tg^4 x) dx;$$

28. 
$$\int \sin^4 x dx$$
;

29. 
$$\int \frac{\operatorname{tg} X dX}{1 + \operatorname{tg} X + \operatorname{tg}^2 X};$$

$$30. \int \frac{dx}{\sqrt{\cos^7 x \sin x}}.$$

#### Ответы

1. 
$$\frac{1}{4} \ln \left| \lg \frac{x}{2} \right| + \frac{1}{8} \lg^2 \frac{x}{2} + C$$
;

2. 
$$\frac{1}{2}(\operatorname{tg} x + \ln|\operatorname{tg} x| + C)$$
;

3. 
$$\frac{1}{\sqrt{2}} \operatorname{arctg} \frac{\operatorname{tg} \frac{\chi}{2}}{\sqrt{2}} + C;$$

4. 
$$-\frac{1}{1+\lg x}+C$$
;

5. 
$$\frac{\mathsf{tg}^3 \chi}{3} + \mathsf{tg} \chi + C;$$

6. 
$$\operatorname{arctg}\left(\operatorname{tg}\frac{x}{2}-1\right)+C$$
;

7. 
$$\frac{2}{3} \arctan \frac{5 \operatorname{tg} \frac{\chi}{2} + 4}{3} + C;$$

8. 
$$\frac{1}{2}((tg^2 \times -ctg^2 \times) + 2\ln|tg \times| + C);$$

9. 
$$x - \frac{1}{7} \operatorname{ctg}^7 x + \frac{1}{5} \operatorname{ctg}^5 x - \frac{1}{3} \operatorname{ctg}^3 x + \operatorname{ctg} x + 3$$
;

10. 
$$\ln \frac{\left| \sqrt[3]{\text{tg}\chi - 1} \right|}{\sqrt[6]{\text{tg}^2\chi + \text{tg}\chi + 1}} - \frac{\sqrt{3}}{3} \arctan \frac{2\text{tg}\chi + 1}{\sqrt{3}} + C;$$

11. 
$$\frac{35}{128}x - \frac{1}{4}\sin 2x + \frac{7}{128}\sin 4x + \frac{1}{24}\sin^3 2x + \frac{1}{1024}\sin 8x + C;$$

12. 
$$\frac{1}{2}$$
ctg $\frac{x}{2} - \frac{1}{6}$ ctg $\frac{3x}{2} + C$ ;

13. 
$$\frac{1}{10}\sin 5x + \frac{1}{2}\sin x + C$$
;

14. 
$$\frac{1}{2} \operatorname{ctg} \frac{x}{2} - \frac{1}{6} \operatorname{ctg} \frac{3x}{2} + C;$$
 15.  $\frac{1}{5} \ln \left| \frac{\operatorname{tg} x - 5}{\operatorname{tg} x} \right| + C;$ 

15. 
$$\frac{1}{5} \ln \left| \frac{\operatorname{tg} X - 5}{\operatorname{tg} X} \right| + C;$$

16. 
$$\frac{1}{4} \ln \left| \frac{\sin x - \cos x + 2}{\sin x - \cos x - 2} \right| + C;$$
 17.  $\ln \left| \frac{\operatorname{tg} \frac{x}{2} - 5}{\operatorname{tg} \frac{x}{2} - 3} \right| + C;$ 

18. 
$$\arctan \left( gx - 2 \right) + C;$$
 19.  $\frac{1}{5} \ln \left| \frac{tg \frac{x}{2} - \frac{1}{2}}{tg \frac{x}{2} + \frac{1}{2}} \right| + C;$ 

20. 
$$\frac{1}{2} (\sin x - \cos x) - \frac{1}{2\sqrt{2}} \ln \left| tg \left( \frac{x}{2} + \frac{\pi}{8} \right) \right| + C;$$

21. 
$$\frac{2}{\sqrt{15}} \operatorname{arctg} \frac{2 \operatorname{tg} \frac{x}{2} + 1}{\sqrt{15}} + C;$$
 22.  $\frac{\cos^2 x}{2} + 3 \cos x + 8 \ln|\cos x - 3| + C;$ 

23. 
$$\frac{1}{2\sqrt{3}} \operatorname{arctg} \frac{2\operatorname{tg} x}{\sqrt{3}} + C;$$
 24.  $\frac{1}{3} \sin^3 x - \frac{2}{5} \sin^5 x + \frac{1}{7} \sin^7 x + C;$ 

25. 
$$-\frac{1}{4}\sin x + \frac{3}{16}\ln\left|\frac{2\sin x - 1}{2\sin x + 1}\right| + C;$$
 26.  $\frac{1}{6}\sin 3x + \frac{1}{2}\sin x + C;$ 

27. 
$$\frac{1}{3} \operatorname{tg}^3 x + C$$
; 28.  $\frac{3}{8} x - \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + C$ ;

29. 
$$x - \frac{2}{\sqrt{3}} \operatorname{arctg} \frac{1 + 2 \operatorname{tg} x}{\sqrt{3}} + C;$$
 30.  $\frac{2}{5} \sqrt{\operatorname{tg}^5 x} + 2 \sqrt{\operatorname{tg} x} + C.$ 

## 2.11. Интегрирование иррациональных функций

Рассмотрим интегралы вида  $\int R \left( x, \left( \frac{ax+b}{cx+d} \right)^{\frac{m_r}{n_r}}, ..., \left( \frac{ax+b}{cx+d} \right)^{\frac{m_r}{n_r}} \right) dx$ , где R- рациональная функция:  $m_1, n_1, ..., m_r, n_r$  - целые ненулевые числа. С помощью подстановки  $\frac{ax+b}{cx+d} = t^{\lambda}$ , где  $\lambda = k(n_1, ..., n_r)$ ,  $k(n_1, ..., n_r)$  - наименьшее общее кратное чисел  $n_1, ..., n_r$ , указанный интеграл преобразуется в интеграл от рациональной функции.

Рассмотрим два частных случая.

1. Если c=0, d=1, то данный интеграл имеет вид  $\int R\left(x, \Phi x + b \frac{\pi_{1}}{2}, ..., \Phi x + b \frac{\pi_{2}}{2}\right) dx$  и преобразуется в интеграл от рациональной функции с помощью подстановки  $\partial x + b = t^{\lambda}$ , где  $\lambda = k(\eta_{1}, ..., \eta_{r})$ .

2. Если b=c=0, a=d=1, то интеграл имеет вид  $\int R\left(x,x^{\frac{m_1}{n_1}},...,x^{\frac{m_r}{n_r}}\right) dx$  и приводится к интегралу от рациональной функции с помощью подстановки  $x=t^{\lambda}$ , где  $\lambda=k(n_1,...,n_r)$ .

#### Примеры

Найти интегралы:

1. 
$$\int \frac{dx}{\sqrt{x} + 4\sqrt{x}}$$

**Решение.** Так как имеет вид  $\int R\left(x^{\frac{1}{2}},...,x^{\frac{1}{3}}\right) dx$ , а k(2,3)=6, т.е.  $\lambda=6$ , то применим подстановку  $x=t^6$ . Тогда

$$\int \frac{dx}{\sqrt{x}+4\sqrt{x}} = \begin{vmatrix} x = t^6 \\ dx = 6t^5 dt \end{vmatrix} = \int \frac{6t^5 dt}{(t^2+4)t^3} = 6\int \frac{t^2 dt}{t^2+4} = 6\int \frac{(t^2+4)-4}{t^2+4} dt =$$

$$= 6\int \left(1 - \frac{4}{t^2+4}\right) dt = 6\left(t - 2\arctan\frac{t}{2}\right) + C = 6t - 12\arctan\frac{t}{2} + C, \text{ где } t = \sqrt[6]{x}.$$

$$2. \int \frac{x^2 + \sqrt{1+x}}{\sqrt[3]{1+x}} dx.$$

Решение. Интеграл имеет вид  $\int R \left( x, (1+x)^{\frac{1}{2}}, (1+x)^{\frac{1}{3}} \right) dx$ , поэтому применим подстановку  $1+x=t^6$ , так как k(2,3)=6,  $\lambda=6$ . Тогда имеем:  $x=t^6-1$ ,  $dx=6t^5dt$   $\int \frac{x^2+\sqrt{1+x}}{\sqrt[3]{1+x}} dx = \begin{vmatrix} x=t^6-1\\ dx=6t^5dt \end{vmatrix} = \int \frac{(t^6-1)^2+t^3}{t^2} \cdot 6t^5 dt = 6 \int t^3 (t^{12}-2t^6+t^3+1) dt =$   $= 6 \int (t^{15}-2t^9+t^6+t^3) dt = 6 \left( \frac{t^{16}}{16} - \frac{t^{10}}{5} + \frac{t^4}{4} + \frac{t^7}{7} \right) + C = \frac{3}{8}t^{16} - \frac{6}{5}t^{10} + \frac{3}{2}t^4 + \frac{6}{7}t^7 + C,$ 

где 
$$t = \sqrt[6]{1 + x}$$
.

$$3. \int \sqrt{\frac{1+x}{1-x}} \frac{dx}{x}.$$

**Решение.** Это интеграл вида  $\int R \left( x, \left( \frac{1+x}{1-x} \right)^{\frac{1}{2}} \right) dx$ . Применив подстановку

$$\frac{1+x}{1-x} = t^2$$
,  $x = \frac{t^2-1}{t^2+1}$ ,  $dx = \frac{4tdt}{(t^2+1)^2}$ , получим

$$\int \sqrt{\frac{1+x}{1-x}} \frac{dx}{x} = 4 \int \frac{t^2(t^2+1)}{(t^2+1)^2(t^2-1)} dt = 4 \int \frac{t^2 dt}{(t^2+1)(t^2-1)}.$$

Разложим рациональную дробь  $\frac{t^2}{(t^2+1)(t^2-1)}$  на простейшие. Тогда

$$\frac{t^2}{(t^2+1)(t-1)(t+1)} = \frac{At+B}{t^2+1} + \frac{C}{t-1} + \frac{D}{t+1}.$$

Освободившись от знаменателей, получим:

$$t^{2} = (At + B)(t^{2} - 1) + C(t + 1)(t^{2} + 1) + D(t - 1)(t^{2} + 1),$$

$$t^{2} = (A + C + D)t^{3} + (B + C - D)t^{2} + (C + D - A)t + C - D - B.$$

Полагая t=1, находим: 4C=1,  $C=\frac{1}{4}$ ; при t=-1 имеем: -4D=1,  $D=-\frac{1}{4}$ .

Сравнивая коэффициенты при одинаковых степенях t, получим систему уравнений:

$$A + C + D = 0$$
,  $B + C - D = 1$ ,

$$C + D - A = 0$$
,  $C - D - B = 0$ .

Подставляя в неё  $C = \frac{1}{4}$ ,  $D = -\frac{1}{4}$ , находим:  $A + \frac{1}{4} - \frac{1}{4} = 0$ , A = 0,  $B = -\frac{1}{2}$ . Тогда

$$\frac{t^2}{(t^2+1)(t-1)(t+1)} = \frac{-\frac{1}{2}}{t^2+1} + \frac{\frac{1}{4}}{t-1} - \frac{\frac{1}{4}}{t+1}, \text{ r.e.}$$

$$4\int \frac{t^2 dt}{(t^2 + 1)(t^2 - 1)} = -2\int \frac{dt}{t^2 + 1} + \int \frac{dt}{t - 1} - \int \frac{dt}{t + 1} = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t + 1| + C = -2\operatorname{arctg}t + \ln|t - 1| - \ln|t$$

$$=-2\operatorname{arctg} t+\ln\left|\frac{t-1}{t+1}\right|+C$$
, где  $t=\sqrt{\frac{1+\chi}{1-\chi}}$ .

## 2.12. Задачи для самостоятельного решения

$$1. \int \frac{\sqrt{X}}{1 + \sqrt[4]{X^3}} dX;$$

3. 
$$\int \frac{dx}{\sqrt{2x+1} + \sqrt[3]{2x+1}}$$
;

5. 
$$\int \frac{x+1}{\sqrt[3]{3x+1}} dx$$
;

7. 
$$\int \frac{x+1}{x\sqrt{x-2}} dx;$$

9. 
$$\int \frac{\sqrt{X}dX}{X-\sqrt[3]{X^2}};$$

$$11. \int \frac{XOX}{\sqrt[3]{2X-3}};$$

13. 
$$\int \frac{dx}{(2-x)\sqrt{1-x}};$$

$$15. \int \frac{dx}{\sqrt{x+1} + \sqrt{(x+1)^3}}.$$

$$2. \int \frac{x-1}{\sqrt{2x-1}} dx;$$

4. 
$$\int x\sqrt{a-x}dx$$
;

6. 
$$\int \frac{\sqrt{x}dx}{\sqrt{x}+1}$$
;

8. 
$$\int_{1}^{3} \sqrt{\frac{x+1}{x-1}} \frac{dx}{(x-1)^{3}}$$
;

10. 
$$\int \frac{\sqrt[3]{3x+4} \, dx}{1+\sqrt[3]{3x+4}};$$

12. 
$$\int \frac{\sqrt{x+1}+2}{(x+1)^2-\sqrt{x+1}} dx;$$

14. 
$$\int \frac{\sqrt{x} dx}{x+2};$$

#### Ответы

1. 
$$\frac{4}{3}$$
 ( - ln ( +1))  $C$ , где  $t = \sqrt[4]{x}$ ;

2. 
$$\frac{(x-2)\sqrt{2x-1}}{3} + C$$
;

3. 
$$t^3 - \frac{3}{2}t^2 + 3t - \ln (+1) + C$$
, где  $t = \sqrt[6]{2x+1}$ ;

4. 
$$\frac{2}{15} (x^2 - ax - 2a^2) \sqrt{a - x} + C;$$

5. 
$$\frac{x+2}{5}\sqrt[3]{(3x+1)^2} + C$$
;

6. 
$$x - 2\sqrt{x} + 2\ln (x + 1) + C$$
;

7. 
$$2\sqrt{x-2} + \sqrt{2} \arctan \sqrt{\frac{x-2}{2}} + C$$
;

8. 
$$\frac{3}{16}\sqrt[3]{\left(\frac{x+1}{x-1}\right)^4} - \frac{3}{28}\sqrt[3]{\left(\frac{x+1}{x-1}\right)^7} + C;$$
 9.  $2\sqrt{x} + 6\sqrt[6]{x} + 3\ln\left|\frac{\sqrt[6]{x} - 1}{\sqrt[6]{x} + 1}\right| + C;$ 

10. 
$$\frac{1}{3}(3x+4) - \frac{1}{2}(3x+4)^{\frac{2}{3}} + (3x+4)^{\frac{1}{3}} - \ln \left| \sqrt[3]{3x+4} \right| + C;$$

11. 
$$\frac{3}{20}\sqrt[3]{(x-3)^{\frac{5}{2}}} + \frac{9}{8}\sqrt[3]{(x-3)^{\frac{5}{2}}} + C;$$

12. 
$$\ln \left| \frac{\sqrt{x+1}-1}{x+2+\sqrt{x+1}} \right| - \frac{2}{\sqrt{3}} \operatorname{arctg} \frac{2\sqrt{1+x}+1}{\sqrt{3}} + C;$$

13. 
$$-2\arctan\sqrt{1-x} + C$$
; 14.  $2\sqrt{x} - 2\sqrt{2}\arctan\sqrt{\frac{x}{2}} + C$ ; 15.  $2\arctan\sqrt{1+x} + C$ .

## Оглавление

| 1. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ                                 | 3  |
|------------------------------------------------------------------|----|
| 1.1. Область определения функции. Линии и поверхности уровня     | 3  |
| 1.2. Задачи для самостоятельной работы                           | 5  |
| 1.3. Предел и непрерывность функции двух переменных              |    |
| 1.4. Задачи для самостоятельного решения                         |    |
| 1.5. Дифференцирование и дифференциал. Производная по направлени |    |
| Градиент. Производная в направлении градиента                    | 11 |
| 1.6. Задачи для самостоятельного решения                         | 23 |
| 1.7. Уравнение касательной плоскости и нормали к поверхности     | 25 |
| 1.8. Задачи для самостоятельного решения                         | 29 |
| 1.9. Экстремум функции нескольких переменных                     | 30 |
| 1.10. Условный экстремум функции нескольких переменных           | 33 |
| 1.11. Наибольшее и наименьшее значения (глобальные экстремумы)   |    |
| функции двух переменных в замкнутой области                      | 36 |
| 1.12. Задачи для самостоятельного решения                        |    |
| 2. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ                                       | 40 |
| 2.1. Первообразная функция и неопределенный интеграл             | 40 |
| 2.2. Основные методы интегрирования                              |    |
| 2.3. Задачи для самостоятельного решения                         |    |
| 2.4. Интегрирование подстановкой (замена переменной)             | 48 |
| 2.5. Интегрирование по частям                                    | 51 |
| 2.6. Задачи для самостоятельной работы                           |    |
| 2.7. Интегрирование рациональных дробей с помощью разложения     |    |
| их на простейшие дроби                                           | 56 |
| 2.8. Задачи для самостоятельного решения                         | 59 |
| 2.9. Интегрирование тригонометрических выражений с помощью       |    |
| подстановок и формул тригонометрии                               | 62 |
| 2.10. Задачи для самостоятельного решения                        | 66 |
| 2.11. Интегрирование иррациональных функций                      | 68 |
| 2.12. Задачи для самостоятельного решения                        | 71 |

#### Учебное издание

## ВЫСШАЯ МАТЕМАТИКА

Руководство к решению задач для студентов механико-технологического факультета

В 7 частях

#### Часть 4

## ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Составители:

ГЛИНСКАЯ Евгения Алексеевна ПРУСОВА Ирина Васильевна ВИШНЕВСКАЯ Ольга Геннадьевна ЛИТОВКО Александр Анатольевич

Технический редактор О.В. Дубовик

Подписано в печать 11.05.2010. Формат  $60 \times 84^{1}/_{8}$ . Бумага офсетная. Отпечатано на ризографе. Гарнитура Таймс. Усл. печ. л. 9,42. Уч.-изд. л. 3,68. Тираж 200. Заказ 299.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. ЛИ N 02330/0494349 от 16.03.2009. Проспект Независимости, 65. 220013, Минск.