О методике выбора технологии сварки высокопрочной стали 15X2H4MДА без подогрева и термической обработки

Студент гр. 104817 Навойчик С.А. Научный руководитель – Голубцова Е.С. Белорусский национальный технический университет г. Минск

Целью настоящей работы является выбор оптимальной технологии сварки высокопрочной стали 15X2H4MДA посредством вычисления обобщенного комплексного показателя D.

Применение высокопрочных сталей с пределом текучести 600 -1000 МПа в сварных конструкциях связанно с их высокой прочностью, удовлетворительной пластичностью и вязкостью, коррозийной стойкостью в атмосферных условиях, что позволяет снизить металлоемкость и увеличить срок эксплуатации изделий.

Свариваемость высокопрочных среднелегированных сталей определяет способность переносить тепловой режим сварки без образования в соединении участков металла с пониженными пластическими свойствами, способствующими возникновению трещин или разрушению сварных соединений при эксплуатации изделий.

В рассматриваемых сталях малопластичные и хрупкие участки также образуются в зонах, где металл перегревается при сварке выше температур A_{C_3} , а при последующем охлаждении в его структуре фиксируется наряду с мартенситом остаточный аустенит.

Основным критерием свариваемости является склонность этих сталей к холодным трещинам. Наиболее часто они образуются в швах и околошовных зонах сталей, свариваемых электродными материалами, близкими по своему составу с основным металлом. Трещины могут возникать как в интервале температур образования мартенсита, так и спустя некоторое время после полного остывания сварного соединения.

Использование сварочных материалов обеспечивающих в металле шва аустенитного класса, позволяет исключить из технологического процесса предварительный подогрев и последующую термическую обработку при сварке изделий из закаливающихся сталей. Сварные соединения с аустенитными швами не склонны к образованию холодных трещин. Однако такой технологический вариант имеет существенный недостаток: из-за низкой прочности аустенитного металла шва для обеспечения равнопрочности сварного соединения шов необходимо выполнять с большим усилием. Это приводит к существенному увеличению сварочных работ и расходу дорогостоящих сварочных материалов.

Дополнительно к этому увеличение усиления сварного шва создает концентратор напряжений, что в большинстве случаев снижает работоспособность сварного соединения. В настоящей работе рассматриваются показатели механических свойств сварного аустенитного шва, полученного при ручной дуговой сварке, механизированной сварке в CO_2 и механизированной сварке под флюсом, с применением электродов марок АНВП-60, АНВП-80, АНВП-100, порошковой проволоки ПП-АНВП80 и проволоки сплошного сечения ЭК-17ВИ, и делается выбор оптимальной технологии по показателям механических свойств сварного шва с помощью метода определения обобщенного комплексного показателя D.

$$d_i = \exp \left[\exp(-y_j^i) \right],$$
 где y_j^i — кодированное значение i -го параметра
$$D = \sqrt[n]{d_1 \cdot d_2 \cdot \ldots \cdot d_n}$$

В результате вычислений получено, что наибольшее значение D имеет ручная дуговая сварка электродом марки АНВП-80 ($\sigma_{0.2}$ = 850 $M\Pi a$, σ_{B} = 1150 $M\Pi a$, δ = 18% , ψ = 50% ,

$$KCV^{+20} = 110 \frac{\text{MHz}}{\text{cm}^2}, \ KCU^{-60} = 80 \frac{\text{MHz}}{\text{cm}^2}.$$

Из трех представленных технологий ручную дуговую сварку электродам марки АНВП-80 следует считать предпочтительной.

Натуральные значения и d_i параметров

Сварочный материал	$\sigma_{0,2}$, МПа	$\sigma_{_B}$, МПа	δ ,%	ψ,%	КСV ⁺²⁰ Дж/см ²	КСU ⁻⁶⁰ Дж/см ²	d_1	d_2	d_3	d_4	d_5	d_6	D
Ручная сварка													
АНВП-60	600	1000	15	40	105	60	0,36	0,2	0,44	0,65	0,8	0,65	0,46948
	700	1100	18	50	110	80	0,56	0,65	0,65	0,8	0,95	0,95	0,74489
АНВП-80	780	1050	15	40	100	60	0,54	0,36	0,64	0,65	0,8	0,65	0,5897
	850	1150	18	50	110	80	0,77	0,8	0,65	0,8	0,95	0,95	0,81315
АНВП-100	950	1150	12	25	70	50	0,72	0,8	0,36	0,36	0,36	0,36	0,46161
	1050	1200	16	35	90	70	0,91	0,95	0,52	0,51	0,65	0,8	0,70155
Механизированная сварка в CO_2													
ПП-АНВП-80	750	1000	14	30	60	45	0,41	0,2	0,36	0,36	0,2	0,36	0,30243
	900	1200	16	40	70	50	0,54	0,95	0,52	0,65	0,36	0,36	0,53122
Механизированная сварка под флюсом													
ЭК-17ВИ	840	1150	18	45	65	50	0,75	0,8	0,65	0,62	0,36	0,36	0,56149
	910	1190	22	50	75	55	0,58	0,91	0,8	0,8	0,36	0,52	0,63119
ПП-АНВП-80	750	900	18	35	65	50	0,41	0,36	0,65	0,51	0,36	0,36	0,43023
	800	1000	25	40	75	55	0,62	0,2	0,95	0,65	0,36	0,52	0,49286