Оптимизация составов боросиликатных стекол для получения мелкоразмерной медицинской стеклотары

Студент Карпович Е.В. Научный руководитель — Терещенко И.М. Белорусский государственный технологический университет г. Минск

Целью настоящей работы является синтез и исследование составов стекол для медицинской тары, производство которой организуется на территории Республики Беларусь.

В настоящее время потребность в стеклотаре в нашей стране удовлетворяется частично за счёт экспорта и частью за счёт производства ампул, организованного ЗАО СП «Еврохрусталь», размещенного на площадях ПРУП «Борисовский хрустальный завод». Однако в обоих случаях стеклотрубка импортируется из России и Украины, причем ее качество не соответствует международным стандартам, а регулярность поставок постоянно вызывает нарекания и риск остановки белорусских заводов медицинских препаратов. В связи с этим предусмотрена организация производства медицинского стекла на территории Республики Беларусь, а базовым предприятием для специализированного производства выбран ПРУП «Борисовский хрустальный завод».

Основной задачей проводимых исследований являлась оптимизация составов нейтральных стекол за счёт определения рационального соотношения оксидов SiO_2 , Al_2O_3 , RO и R_2O , при сохранении уровня водо- и щелочеустойчивости, соответствующего первому классу и поддержания удовлетворительными технологических характеристик опытных стекол при минимальном содержании B_2O_3 . Также необходимо было минимизировать содержание щелочных компонентов в опытных стеклах, поскольку ионы Na^+ и K^+ легко переходят в растворы, ухудшая качество медицинской тары.

Объектом исследования была выбрана система Na₂O-K₂O-CaO-BaO-Al₂O₃-SiO₂.

Изучение кристаллизационной способности экспериментальных стекол показало, что наибольшая устойчивость к кристаллизации достигалась за счёт введения в их составы 5,5-6,5 мас.% Al_2O_3 . Замена B_2O_3 на оксиды щелочных металлов не оказывала влияния на кристаллизационную способность.

Увеличение содержания R_2O свыше 10 мас.% приводило к существенному увеличению ТКЛР, и, как следствие, к снижению их термостойкости, также отмечалось ухудшение водостойкости опытных стекол вследствие роста миграции щелочных ионов в раствор, приводящее к изменению его состава. Минимально возможное содержание Na_2O+K_2O в изученных сериях стекол составило 6-7 мас.%, а содержание B_2O_3 варьировалось в интервале 6-8 мас.%. Положительное влияние на повышение химической устойчивости оказала замена Na_2O на оксид BaO (до 4 мас.%).

Для достижения 1-го класса водо- и щелочеустойчивости при пониженном содержании B_2O_3 дополнительно предусмотрено введение ZnO (до 3 мас.%), а также Li_2O , обеспечивающего проявление полищелочного эффекта. В результате введения ZnO происходило снижение количества мигрирующих в раствор ионов на 40%, что соответственно увеличивало показатели водо- и щелочеустойчивости, причем положительное влияние оксида цинка выражено тем сильнее, чем меньше содержание B_2O_3 в составе стекла.

Таким образом, установлены закономерности изменения кристаллизационных и физико-химических свойств стекол на основе системы $Na_2O-K_2O-CaO-BaO-Al_2O_3-SiO_2$, модифицированной оксидами Li_2O и ZnO, разработаны оптимизированные составы стекол, включающие, мас.%: $SiO_2-(71,5-74,0)$; $B_2O_3-(6,2-7,6)$; $Al_2O_3-(5,5-6,5)$; RO-(7,2-9,1); $R_2O-(5,5-9,0)$.

По своим свойствам медицинские стекла разработанных составов не уступают импортным составам медицинских стекол, что позволяет рекомендовать разработанные составы для изготовления медицинской тары при организации ее производства на ПРУП «Борисовский хрустальный завод».