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Resonance Raman spectra interpretation 
by molecular coherent state representation
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Abstract. In this paper the problem of exact summation over vibrational states 
of intermediate electronic level excited by resonance Raman scattering in a 
molecular system with an arbitrary number of vibrational modes is solved with 
the help of the coherent state representation. For matrix elements of the 
resonance Raman (RR) amplitude the expressions in the form of an integral and 
multiple series as well as recurrence relations are obtained. The interpretation of 
RR spectra of linear-chain mixed-valence platinum complexes is given as an 
illustration.

1. Introduction
Resonance Raman (RR) band intensities in molecular systems are described, as a 

rule, by the second-order perturbation theory [1] that connects intensities with the 
polarizability tensor. The vast field of RR spectroscopy on crystals is usually 
described by the third-order perturbation theory [2] using a susceptibility tensor. 
Though historically the descriptions of RR experiments in molecules and solids have 
developed independently, the fundamental physical processes are identical. Hence, 
in [3], an attempt to apply the perturbation theory of the third order to molecular RR 
scattering was made. As shown in [4], the methods [1] and [3] are equivalent.

The RR intensity of the v-w transition between vibrational levels of the ground 
electronic state g of the cold ( T'=0 K) molecule under the influence of incident light 
of frequency coq is connected with the dynamic polarizability tensor Hence we 
can put down

-(tOo-o>v)*IO^ (1 )
The vectors in this expression have n components according to a number of excited 
vibrational modes in the system. Thus,

corresponds to excitation of quanta in normal mode 1, V2 quanta of mode 2, etc., as
a result of RR scattering in the ground electronic state. The initial molecular 
vibrational state is described by the vector

the vector

w = {wi,ta2........u)„);

(0 =  i(0i,C02,---,0}„)
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represents a set of excited normal vibration frequencies of the system. The scalar 
product is defined by the usual means:

ttiv = + (021̂ 2 + . . .  4-

In standard approximations of RR theory [1] (adiabatic Born-Oppenheimer for 
electron-nuclear motion, Condon for dipole electric momentum, harmonic for 
vibrational motion)f as well as in the suggestion of single resonant electronic state e 
(the rest excited electronic states are supposed to be removed), the polarizability 
tensor may be written as follows: |

a^=const]^
<v|m><m|w>

m A£*g+ fi»(m -  w) -  <Oo -  ІГ*
(2)

Here A£*eg is the electronic energy gap, is the relaxation rate of the state em, i.e. 
the total damping constant, which is determined by all the homogeneous broadening 
mechanisms,§ <.|.> are overlap integrals for vibrational wave functions written in 
Fock space [5], and variables

m = (m i,m 2 ,...,m j

are numbers of vibrational quanta in the intermediate electronic state.
The expression (2) under review shows that in solving the problems of RR 

intensity calculation one should make a summation over the multidimensional 
vibrational space of the excited electronic state. The difficulty of this problem 
usually compels to solve it by fitting to the best coincidence with experimental 
data with regard to only some lower vibrational levels. One of the first attempts to 
take into account the contribution of all the intermediate vibrational states in one­
mode molecular system was realized, evidently, in [6]. In the review [7] difficulties of 
summing-up over intermediate states in the case of multidimensional vibrational 
space as well as variants of getting them over with the help of a transform method (for 
example [8,9]) were examined. This method was developed from the time-correlator 
formalism [10] on the basis of the theorem relating absorption and RR intensities as 
incident photon frequency functions.

All these approaches are rather good for calculating RR spectra on powerful 
computers, but are quite inconvenient for simple analysis. In this paper one can find 
solutions of the problem formulated above using the coherent state (CS) represent­
ation described in detail in [11]-[14]. CSs are used to describe a multidimensional 
harmonic oscillator modelling vibrations in a large molecular system—so-called 
molecular CSs. In contrast to the approaches noted above, which are good for 
calculating RR spectra with the help of powerful computers only, we develop an 
approach that is convenient both for computer calculations and for a simpler and 
more intuitive analysis.

fT h e  object of interest is a large molecule, and so the effect of anharmonicity is 
insignificant.

}  Herein and below, units in which are used.
§ Vibrational levels of the ground electronic state are operating initial and final states in an 

act of RR scattering, while vibrational levels em of the excited electronic state are virtual. 
Thus, relaxation processes in the excited electronic state as well as inhomogeneous effects do 
not influence the RR band width. Therefore, for RR spectra, effectively, Гв„, =  Г.



Resonance Raman spectroscopy 23

In section 2, which is mainly methodical» a detailed description of the summation 
method for a case of excitation of a one-vibrational mode in molecula is given. In 
section 3, on the basis of the developed method, the overall intermediate-state sum in 
the common case of excitation of a multidimensional vibrational space is performed. 
Section 4 illustrates the use of the method for RR spectra interpretation.

2. System with one vibrational degree of freedom
2.1. Notation

In this section we examine the case of excitation of one vibrational degree of 
freedom (« = !)  only. Hence, we rewrite (2) in the following form:

=const<t?|^(ff')|K’>,

-10

-іГ)/о).

(3)

(4)

(5)
I'oO'̂  + W*- 

(Т' =  (А£е,-й)о

Our first goal is the exact calculation (in the harmonic-oscillator approximation) 
of a sum in a matrix element of an operator (4).f For this purpose, let us use a Fock- 
Schwinger eigentime representation (see, for example, [15]). In the framework of 
this representation a matrix element of RR amplitude may be written as

<иИ(«т')|я)>
00 Л ®  

m = 0  J  0
dp  exp [ Pics' + m — w)]<t7|mXm|«(7). (6)

The matrix element (6) will be the subject of our investigation. We shall study the 
matrix element with the help of CSs for a harmonic oscillator, modelling vibrations 
in a molecular system.

2.2. Expressions fo r  amplitudes in coherent state representation 
The matrix element

<у|Л((тО|а> = ехр[--К|а1ЧЫ^)] X  (7)

is a generating function for (̂ v\A{(s')\tvy. Replacing the expression (6) of the 
amplitude matrix element by the eigentime P into equation (7) we obtain the 
expansion

<y\A(o')\a}= Г а ;?ехр [-і| ар (і-е^ ')] f  e-«"- "̂><y|m><m|e'a>. (8)
J  0 W = 0

One can calculate the integral in equation (8) in several ways. It is more 
convenient to do this using a coordinate representation. We will model a vibrational 
mode excited in a molecula by a harmonic oscillator. We should remember that the 
wave functions of |y> and |ê a> concern the initial electronic state, g, while the |m) 
functions concern the excited one, e, the potential minimum position of which we 
will consider to be displaced on the value of R. Into the expansion of (8) we can 
substitute coherent states of harmonic oscillator, representing Gauss exponents [II]

fN ote that the kernel of summation (4) is, in essence, the Green function of a one­
dimensional quadratic system.
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and standard normalized wave functions manifested (for example [16]) via Hermite 
polynomials, as well. In the obtained expression, we can accomplish the 
summation over quantum number tn using Mehler*s formula for a product of 
Hermite polynomials [17]. Then, having integrated over coordinate variables we 
obtain, for an amplitude generating function,

<УИ(У)|«> = exp [-i(| e |2 +  |y|2) _ 52]

d^e-^ 'exp [(ae '-5 )(v *-^ )e-''+ (5(ae ''+ 7*)], (9)
j ;

where й is a dimensionless displacement of the oscillator potential minimum under a 
transition into the excited state

( 10)

/І is a reduced mass of the modelling oscillator. The formula (9) is an integral 
expression for the matrix element (6) of an RR amplitude in the representation of 
coherent states of the molecular oscillator.

The described method of obtaining the integral expression (9) is not suitable for 
generalization in the case of excitation of an arbitrary number of vibrations in a 
system. So let us consider other ways.

First, we make some calculations of an auxiliary character. Proceeding from the 
notation of generating functions, we have

00 irj2m
<ylCXC|a>=exp(-|CI^) X  з̂;-<у1от><ш|а>.

Го m (1 1 )

Now we use the results of [18]; hence the scalar product of CSs for harmonic 
oscillator can be transferred to

<yl«> = Z " exp [ -  I(|ap + ІУІ2+5*)] exp -  5)^+^ (a -  <5)y • -  + ай J,

( 1 2)

where the variables x and ф are connected with the oscillator frequencies of O) and (o' 
in the states of |a> and |y>, respectively,

CO-̂ O)' (0-^(0
2(ако')^̂  ̂ ’  ̂ 2{охо'ў^^

In our case the oscillator frequency in both states is constant,

(0 =  0)',

(13)

(14)

Taking into account the equalities (12)-(14), the expression (11) can be put down in 
the form:

е хр [-К |а |" +  Ы ^)-< 5 ^+ (а + У *)^ ]^£ *а 0 е хр {[(а -й )е -'*+ (у *-й )е "]|С |}

00 \П2т
=  £  ^Ц-<УІ»я><»п|а>. (15)

m=o от!
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An integral in this equality is a modified Bessel function of the first kind and 
zeroth order [17] with the following expansion in series:

W =  I= 0 (fnly
(16)

Using this expansion in equation (15) we obtain another representation for a 
generating function of the amplitude matrix elements:

<уИ(<7')1«> = exp [-i(|a|2 +

(17)

In this formula y[.,.] is the incomplete gamma function [19].
We may show that the expression (17) is equivalent to (9). Generalization of (9) 

and (17) is given in Appendix A l.

2.3. Expressions fo r  amplitudes in the Fock representation
Now let us pass from the integral expression for matrix elements of <у|Л((г')|а> 

amplitude in the representation of a harmonic oscillator CSs to the expression for 
{v\A(a')\wy matrix elements in the usual (Fock) representation. For this purpose, we 
shall use an expansion of the quadratic exponent into a Laguerre polynomial series 
[20]:

ехр(у*ж+аз»+у*аг)= £
I»,

Substituting this into (9) for the (у\А(а')\аУ matrix element, we expand CSs into 
discrete (Fock) states. We obtain the integral representation for the <v|^(<r')N) 
matrix element of RR amplitude:

<v\A{a')\ui} =  I*'’ ^ j* d P ex p [d ^ eP -\ )-^ ff']
\m zx(v,to)l/ J o

"L!sr„rJ,H „(-45"sh^0 (18)

where min (t;, w) and max (v, zv) are the minimum and maximum values of v and tv, 
respectively.

If one considers separately only Stokes or anti-Stokes processes, one can simplify 
equation (18). For example, if v^tv, having replaced an integral variable, we 
calculate that

<®И(а')1св>=г*'-«'^^у'" (19)

Integrals of the (18) and (19) type can be calculated and they represent a sum of 
products of the gamma function Г( . ) and confluent hypergeometric function 
Ф (., . , . )  [19]. For example,

<o| (̂ff')|0> =
r(ff')

r(<r'+v +  l)
S"(viy'^0(v + l,(T '+ v + l, -S^). (20)
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This formula coincides with the expression given in [6]. From the representation 
(17) one can obtain an expression equivalent to equation (20):

<г;И(с7')|0> = Г((/)
^  Г(п + «; + 1) i - 6 ^ r

«=0 r(a ' + łi 'f  г^+1) ni

2.4. Recurrence relations
Knowing the generating function <у|Л(<г')1<зс) gives us the opportunity to obtain 

recurrence relations for the ( v̂\A(a')\wy matrix elements. Taking the derivative of 
this value with respect to the CS parameter a we find

da
<уИ(а')|а> =  (?* -  Ж уИ (0|а> 4-5<уЙ(а'- 1  )|a>. (2 1 )

Expanding into a  and y* power series and equating coefficients of equal powers in the 
right and in the left sides of the expression, we obtain the recurrence relation

<г;|Л((7')|«; + 1>
- ( ^ Г '

+ 1  “  <«И (01«’>] • (22)

Taking the derivative of the generating function with respect to y* we obtain by 
analogy:

iv\A(a')\w^iy

[<v\A(o')\w}--<v\A(o'^l)\wyi (23)

The recurrence relations (22) and (23) connect matrix elements between them 
when arguments o' differ by 1. For matrix elements <г;|Л((г')|0), with a vibrationless 
initial state, one can obtain recurrences connecting RR amplitudes with the same 
value o'. For this purpose, it is necessary to use their evident expression via special 
functions.

For example, using the Gauss formula for contiguous relations between 
confluent hypergeometric functions [19] we obtain

exp -ііуі^
5<уЙ(<г' +1)|0> =

y* — S
<y\A(o')\0}^

—5

Substituting this expression into (21), making differentiation procedures and 
equating again obtained coefficients of equal powers of CS parameters, we have

<г;+1|Л(<т')|0> <г>- 1  \A(a')\0>+ .  (24)

where is the Kronecker delta. This recurrence relation (24) coincides with one 
obtained by another method in [21].



Resonance Raman spectroscopy 27

3. System with a finite number of vibrational degrees of freedom
3.1. Formulation o f a  problem

In this section we consider a case of excitation of several normal vibrations in a 
molecular system. A vibrational structure of the ground electronic state is modelled 
by a multidimensional harmonic oscillator with the Hamiltonian

2
(25)

where 0)j is the frequency corresponding to the j-th  normal mass-weighted 
coordinate Xj, through which the generation operators a^ and annihilation operators 
aj of vibrational quanta are expressed in the usual way:

It is suggested that in excited electronic state the molecular Hamiltonian takes 
the form

(26)

where O)] is the frequency corresponding to a normal mass-weighted coordinate

(27)Xj=^Xj—Rj,

Rj is the value of the molecular potential surface minimum shift in the excited state 
(relative to the ground state) along the j-th  coordinate, bj is annihilation operator of 
the У-th vibrational mode quantum in the excited electronic state, and b f  is the 
adjoint of bj. As in the one-dimensional case in the final formulae we suppose

vy (28)

We consider, as usual, that the initial molecules are in a vibrationless state. This 
simplifies the obtained formulae. Then, we can rewrite the polarizability tensor (2) in 
the following form:t

(Zv*= const< v|G(a)|0>, 

=  cOq —ІГ.

Quantities in these formulae were explained earlier.

(29)

(30)

(31)

t  The RR amplitude operator G(o) is proportional to the operator A{o') and, in contrast to 
the latter, it is not measured in units of any normal vibration frequency with symmetry 
preservation aim with respect to all n excited vibrations in the system.
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For the RR amplitude matrix elements <v|G(<r)|0), by analogy with the one­
dimensional case (6), one may pass to an eigentime representation» where

Лоо
<v|G(<r)|0>=X diJe-«'--"><v|m><m|0>.

m J  0

And again, these matrix elements are the main consideration.

(32)

3.2. Expressions fo r  amplitudes in the coherent state representation
Matrix elements of RR amplitudes in the CS representation of a multi­

dimensional harmonic oscillator should be written in the following form:

<y|G((T)|0> =  e x p (-iM 2 )X Vi•“i • y?""
<v|G(ff)|0>.

To simplify similar expression by analogy with Bargmann [22], we must 
introduce the designations

in accordance with which we can rewrite the previous expression in the form of

(33)<y|G((T)|0> =  exp ( -ily p ) ę  <v|G(ff)|0>, 

and the generating function for (32) will be

<y|G(ff)|0> = X  f * diJe-«'+-»)<y|in><m|0>.
HI J 0

In accordance with section 2, where the method of calculation for the one- 
vibrational mode was set forth, let us consider the product of the multidimensional 
overlap integrals

2m

<ylCXC|0>= exp ( -  |C|^)i:^<?|m><m|0>.
ro

(34)

The scalar product of two multidimensional CSs in the case of oscillator 
coordinate transformation under excitation according to the rule (27) can be 
presented in the form of a product of one-dimensional ones:

<ylO = Д < уЛ > -

Having used for each of the one-dimensional scalar products the presentation 
similar to (13), we can rewrite the previous equality in the following way:

<y|0 =  exp [~Ш\^ +  І7І'+

X Д  + ^ ( 0 - W -
7=1 Xj

.Ż
^Xjи

where

,'Л */2 'ЛІ/2
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where Й is a vector compounded of dimensionless displacements 8̂  along each 
normal coordinate:

Hence

<ylO<C|0> =  exp [ -  ICP -  Ь^+у'

+ ^ [{y f-S j)C j-C fS j] ^c;+cf)}.

l i y f - S j f  + Sj]

Xi~ ' ' ' ' '
Now let us fulfill the condition (28), i.e. let Vy Xj== ^ ;= 0 . Taking into account

(34), we obtain

x \ 2m
Z^<r|m ><m |0> = e x p [ - i lr p -3 " + (y * - i ) f -C * « + y » 5 ] .
in Hi!

Further, using the representation of the modified Bessel function I q in the form 
of a series, we obtain

<y|m><m|0> = e x p ( - i| y p - ^ ^  +  y *5) f j  ...
j=i mjl

This enables us to write down the overall multidimensional sum (33) in CSs 
representation :f

<ylC((7)10> =  expt-il7|"-(5-y*)5]e[(3, ... ,(0„-у?Я ; ttfi,... - a ] .
(35)

In the expression

ftj,.......G),; c]=^- c)

Some properties of the (^-function are given in Appendix A2.

(36)

3.3. Expressions fo r  amplitudes in the Fock representation
The integral expression for generating functions of multidimensional RR 

amplitude matrix elements follows from that for the special Q-function (see 
Appendix A2):

<y|G(G)|0> =  exp(-il7|2) Г п р е-О ^  П  e x p [ - 5 j ( l - е - ' “0  +  УГ«5/1- е " ' “0].
J  0 J=i

(37)

Expanding the equality obtained into a series in powers of parameter yf, we 
deduce the integral expression for the RR amplitude matrix elements in Fock space;

<v|G(<T)|0>= Д  exp[-<5^ (̂1 -e--»»^)]. (38)

fT h e  equality (35) can be deduced also by another method [23], by analogy with the 
method described in Appendix A l.
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Calculating the integral (37) one can derive the amplitude matrix element 
representation in terms of a multiple series:

Г39)

( Э
vsrhere are binomial coefficients.

3.4. Recurrence relations
Recurrence relations for generating functions of RR amplitude matrix elements 

with different arguments result from the relation (AS) for a special Q-function with 
contiguous values of energy variable:

j=i
Expanding matrix elements into a series in powers of the CSs parameter and 

equating terms of the same power, we obtain

Z  [^j<»j(''^G(a+(OJ)|0}-SJCo/vJ)^^^<^VJ-l|G((т+WJ)^0)] +<7<v|G(<r)|0>- 1/2

(40)

In this formula we use the designation

( V j - l|G(ff+fijy)|0> =  <«;,,. . . ,  w^_i, D y-1, , wJG(ff+£t)y)|0>,

where ‘s an n-dimensional Kronecker delta.
The recurrence relation (40) connects the amplitudes with arguments differed on 

a quantity of normal frequencies. It is interesting to get a connection of matrix 
elements of RR amplitudes with exciting only any one normal coordinate. Having 
differentiated the integral expression for the matrix element <y!G(cr)|0> (37) with 
respect to the chosen yf, and having done the same with expansion of this matrix 
element with respect to the Fock states (33), let us equate the series obtained. We find
[24] that

Vj (vj+ty'^(vj+HG(<r)lO>=S/(viG(a)IO)-<viG(tx+ojj)IO)), (41)

where the following designation is accepted:

<»y+l|G(ff)|0> =  <®i.........vj+ i....................................»,|G(ff)|0>.

Using (41) in common relations (40) we can get rid of expressions with displaced 
arguments of the cr-hcoj type. As a result, we obtain the following symmetrical 
relations connecting the RR operator G(a) matrix elements:

t  [SJOiДvJ)^l\vJ-1 |G(<T)|0> - (v j+ 1 )̂ /"<г;y +1 lG(ff)|0>) + (Sj + i;y)cUy<vlG(ff)|0>]
i= l

+ <7<v|G(ff)|0>-5,„=0. (42)

In these relations all the matrix elements depend upon one and the same argument 
and differ by an excitation number of different normal vibrations. In the case of only 
one normal coordinate, the relations (42) are coming to recurrence relations (24) 
obtained earlier.
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4. Illustration
Linear-chain mixed-valence platinum complexes are solid crystal salts under 

standard conditions. The platinum exists in the ground state of these molecules in 
two different environments, square planar and octahedral with formal oxidation 
states, -f 2 and + 4  respectively. Platinum ions are bridged by halogens. A molecule 
formed in this way is a linear chain with alternate valences of chain-making platinum 
ions. Physical properties of such compounds are highly anisotropic, and they may be 
treated as quasi-one-dimensional semiconductors [25].

RR spectra of complexes of interest [26] are observed if molecules are irradiated 
by light with frequencies in the absorption band. Electron transition is electrically 
allowed, and RR spectra are characterized by long intense progression where 
0)x is the totally symmetric stretching vibration of the Pt'^^-X chain; X  is the 
halogen. The anharmonicity constants for such modes are on the average — 1 »0 cm “  ̂
for chlorides, and about — 0-3cm~^ for bromides. This is in agreement with the 
general observation that the vibration-forming long progression of RR overtones is 
harmonic. The intense progression of the main vibration coj is accompanied by other 
weak progressions, the enabling mode of which is another Raman-active mode, while 
the progression-forming mode is, as for the main progression, (У̂ .

With respect to equation (1), from the ratio of intensities of the RR bands 
corresponding to different sets V| and V2 of vibrational quanta, we obtain

ЬгЛ { <Но-Д>У2у|<У2
Д.о І<Уі

<V2|G(ff)|0>
|G(ff)|0>

(43)

where matrix elements <v|G(o’)|0> are given by (38) and (39) and are dependent on 
dimensionless displacements S of the molecule potential surface minimum.

From experimentally measured values of the RR intensities of the first overtone 
and the fundamental of the main progression-forming mode (Uj, with the help of 
equation (43), we found the magnitudes of the dimensionless displacement. The 
displacements and the corresponding axial Pt^'^-A'bond length changes Л (10) on 
excitation from the ground to the resonant excited state for the compounds 
investigated are listed in table 1. Displacements along other excited normal 
coordinates were obtained in the same way. So we have extracted the excited-state 
geometry of such molecules from the RR spectra [27].

With the help of displacement magnitudes by recurrence relations of section 3.4 
we computed relative overtone and combination band intensities, i.e. intensities with 
respect to the intensity of the main progression-forming mode Calculated RR 
spectra of these complexes are in good agreement with experimental ones. This 
testifies to the reliability of the obtained excited-state geometry parameters.

Table 1. Computed excited-state geometry changes for linear-chain mixed-valence
platinum complexes.

Complex 3 ж  A)

[Pt(en)2](Pt(en)2Clj](C104)4 2-54 0*21
[P t(en)j][P t(en)jB rJ(C 10J* 1-77 0*15
[Pt(en)CIj][Pt(en)CI.] 200 0*17
[Pt(en)Br2][Pt(en)BrJ 1-99 0*17

en~ 1,2-diaminoethane H2N-CH 2-C H 2-N H 2.
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The author of [26], who did not succeed in extracting such information from RR 
spectra of these platinum complexes using other methods, suggested, in terms of 
chemistry, that the Pt'*‘^ -X  bond length changes on excitation, perhaps by some 
tenths of an angstrom; this agrees with the magnitudes we obtained.

5. Conclusion
We now consider the principal results obtained in this paper. With the help of the 

CS method, we carried out the exact summation of the contributions from all the 
multidimensional vibrational diversity of the intermediate electronic state into the 
polarizability tensor of RR scattering in a polyatomic system. For the RR amplitude 
matrix elements, closed expressions, using molecular system parameters and 
experimental conditions, were obtained. Amplitude matrix elements are expressed 
using a Q special function. Recurrence relations for Q-functions and some types of 
recurrence relations for matrix elements of RR amplitudes are deduced. In the case 
of the excitation of one normal mode, the expressions obtained are as previously 
achieved by other methods.

The developed formalism enables one to solve the problem of extracting excited- 
state geometry parameter according to RR spectroscopy data as well as RR band 
intensity calculation.

Application of the method to the spectra of concrete species has been carried out. 
For illustration, we chose linear-chain mixed-valence platinum complexes, the 
calculations for which cannot be provided by other methods.
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Appendix
A l. Generalization o f equation {9)

In view of possible subsequeant generalizations we obtain an expression for 
matrix elements in the coherent state representation without the condition (14). 
Remembering [17] that the exponent exp is a generating function for the
Hermite polynomials H J jk) and taking into account that the scalar product <y|a> is a 
generating function for the product <m|a> in a mixed basis we obtain from equation
(12) the necessary expression for the product <m|a) included in equation (8):

(At)

Substituting the equality (A 1) into the initial expansion (8) and using, as it was 
done above, the Mehler formula for the Hermite polynomials product, we obtain an 
integral expression for the matrix elements of RR amplitude in the coherent state 
representation in the following form:

<уИ(о')|а> = exp [ - Ш ^  +  l7P) -

.. ■ JO exp(-^ ff')
j :

[(««"**“ ■ -5 = ) + (V  -  e ’ l

(A 2)
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This integral expression (A 2) has a more common nature than (9) because 
deducing the first one it was suggested that frequencies of the normal mode in the 
initial and in the excited states are different. If one takes a condition (14) of 
frequencies equality, i.e. and ^ = 0, one will come back from (A 2) to the 
expression (9).

A 2. Special Q-function
The Q-function like (36) appeared [12] in connection with investigations of 

various systems in the CS representation of quadratic Hamiltonians. The function 
depends on 2;i + 1 variables. It is convenient to name the first n variables, Zp as the 
main variables, the second group of variables, 0)p as frequency variables, and the last 
variable as energy.

Somehow this function is one of the natural generalizations of a confluent 
hypergeometric function in a multidimensional case. Namely, with the identical 
frequency variables =  . . .й),=й) the Q-function comes to a confluent hypergeo­
metric one:

In the case of a one vibrational mode the expression (35) comes to (20). If one 
rewrites (36) in eigentime representation and sums over states m, one can obtain the 
integral representation for the Q-function:

Q lzi........ -< t]=  j* d/?exp| ^ - ] ? < т + ( A3)

Hence, we immediately have a formula for a Q-function differentiation along any 
main variable:

dz

Integrating the representation (A 3) by parts, one obtains the recurrence relation 
connecting the 0-function with different energy variables; that is.

^C 0jZ jQ [zi,...,z„; 0)i,...,(W ,; - a - c o j ]

+  <^Q[zi,...,z„; -<r] =  exp (A 5)

If we consider the one-dimensional function Q[z; со; — (x], there remains only 
three terms in recurrence relation (AS) and we come to Gauss relations for 
contiguous confluent hypergeometric functions [19].
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