УДК 535.36:539.125.523

Н. Н. РОГОВЦОВ, А. М. САМСОН

ОБ ОЦЕНКАХ СРЕДНЕГО ЧИСЛА РАССЕЯНИЙ ФОТОНА И СРЕДНЕЙ ПЛОТНОСТИ ИЗЛУЧЕНИЯ В РАССЕИВАЮЩИХ СРЕДАХ, ИМЕЮЩИХ НЕВОГНУТУЮ ФОРМУ

(Представлено академиком АН БССР П. А. Апанасевичем)

Средние значения таких величин, как число рассеяний фотона, плотность излучения, длительность свечения и т. д., представляют собой весьма важные и удобные интегральные характеристики, описывающие в целом процесс многократного рассеяния света. Определению этих величин, а также построению методов их вычисления для случая плоскопараллельных и сферически симметричных сред посвящен целый ряд работ (см., например, [1—7] и ссылки в них). С теоретической и практической точек зрения представляет значительный интерес разработка алгоритмов отыскания интегральных характеристик полей излучения для рассеивающих объектов сложной формы (значительная часть реальных рассеивающих сред имеет весьма сложную конфигурацию). Ряд результатов в этом направлении был получен в [8—11].

В данной статье найдены нижние и верхние оценки (двойные неравенства) для указанных выше величин, когда рассеивающие среды однородны и имеют невогнутую форму. В качестве приложения полученных в работе двойных неравенств выведена асимптотика среднего числа рассеяний фотона в оптически толстом консервативно рассеивающем

шаре, содержащем произвольные внутренние источники.

Рассмотрим однородную рассеивающую среду V, ограниченную

невогнутой поверхностью S. Пусть она содержит в \mathring{V} ($\mathring{V}=V\backslash S$) первичные источники $g(\mathbf{r},\Omega)$, где \mathbf{r} —радиус-вектор, Ω —единичный вектор, задающий направление испускания излучения (он будет также использоваться для обозначения направления распространения излучения). В качестве одной из интегральных величин, характеризующих вклад рассеянных фотонов в поле излучения в V, можно взять следующее выражение:

$$N(\Lambda) = J^{-1} \iiint_{V} dV \iint_{\Omega} \alpha S(\mathbf{r}, \Omega, \Lambda) d\Omega - 1 =$$

$$= J^{-1} \sigma \iiint_{V} dV \iint_{\Omega} I(\mathbf{r}, \Omega, \Lambda) d\Omega, \quad J = \iiint_{V} dV \iint_{\Omega} g(\mathbf{r}, \Omega) d\Omega.$$
(1)

Здесь Ω —единичная сфера; α и σ — показатели ослабления и рассенния; $\Lambda = (\sigma/\alpha)$ — альбедо однократного рассеяния; $S(\mathbf{r}, \Omega, \Lambda)$ — функция источников, определяемая соотношением

$$\alpha S(\mathbf{r}, \ \Omega, \ \Lambda) = \frac{\sigma}{4\pi} \int_{\Omega} x(\mathbf{\Omega} \cdot \mathbf{\Omega}') I(\mathbf{r}, \ \Omega', \ \Lambda) d\Omega' + g(\mathbf{r}, \ \Omega). \tag{2}$$

Входящие в (2) величины x(...) и I(...) представляют собой соответственно индикатрису рассеяния и интенсивность излучения в V. В статьях [2] было показано, что (N+1) для случая изотропных источников и сферической индикатрисы имеет смысл среднего числа рассеяний фотонов как «гибнущих» в среде, так и выходящих в процессе диффузии из V через S (в данной работе в отличие от [2] первичный акт испускания кванта не будет считаться рассеянием). Параметр N, определяемый (1), характеризует кратность рассеяния для общего случая анизотропного рассеяния и произвольных источников $g(\mathbf{r}, \Omega)$. Используя вероятностную трактовку характеристик теории переноса излучения [12], рассуждения, формально близкие к проведенным в [1, 2], и соотношение инвариантности (2) работы [11], можно показать, что для случая консервативного рассеяния величина N(1) действительно имеет смысл среднего числа рассеяний фотона (так как при $\Lambda = 1$ среда не поглощает энергии, то N(1) представляет собой среднее число рассеяний фотона, «рожденного» в пределах V и вышедшего в процессе случайных блужданий из среды через S).

Заметим, что если известно $N(\Lambda)$, то с помощью формулы

$$\overline{u} = (vm(V))^{-1} \iiint_{V} dV \iint_{\Omega} I(\mathbf{r}, \Omega, \Lambda) d\Omega = \frac{JN(\Lambda)}{\sigma m(V) v}$$
(3)

легко найти среднюю плотность \bar{u} энергии излучения, приходящуюся на единичный спектральный интервал (v и m(V)—соответственно скорость света в среде и объем тела V). В работе [7] при $\Lambda = 1$ было получено общее выражение для средней длительности t^* свечения тела V

(среднее время выхода энергии излучения из V) при наличии в V нестационарных источников $g(\mathbf{r}, \Omega, t)$ ($g(\mathbf{r}, \Omega, t) \equiv 0$ при t < 0; t—время). Сравнивая его с выражением (1) при $\Lambda = 1$ (т. е. при $\alpha = \sigma$), находим, что

$$t^* = t_0^* + N(1)\overline{t}, \ \overline{t} = (\alpha v)^{-1},$$

$$t_0^* = \left(\iiint\limits_{\tilde{V}} dV \int\limits_{\Omega} d\Omega \int\limits_{0}^{\infty} g(\mathbf{r}, \ \mathbf{\Omega}, \ t) \ dt \right)^{-1} \iiint\limits_{\tilde{V}} dV \int\limits_{\Omega} d\Omega \int\limits_{0}^{\infty} t g(\mathbf{r}, \ \mathbf{\Omega}, \ t) \ dt.$$
(4)

Под N(1) в (4) надо понимать среднее число рассеяний фотона, вышедшего из V при наличии в \mathring{V} источников вида $g(\mathbf{r},\ \Omega)=T^{-1}\int\limits_{0}^{\infty}g\left(\mathbf{r},\ \Omega,\ t\right)dt$

(T-единица измерения времени в системе единиц, в которой задается t). Формула (4) имеет простой физический смысл, поскольку \overline{t} представляет собой среднее время полета фотона между рассеяниями, N (1) $\overline{t}-$ среднее время, проводимое фотоном в полете до выхода из среды, а t_0^*- среднюю длительность свечения источников излучения. Из (3), (4) следует, что, сделав оценки или вычислив N (Λ), уже нетрудно получить аналогичные результаты для \overline{u} и t^* .

Используя закон сохранения энергии и делая элементарные преоб-

разования, приведем (1) к виду

$$N(\Lambda) = \frac{\Lambda J^{-1}}{1 - \Lambda} (J - \Pi(S)), \tag{5}$$

где $\Pi(S) = \iint_S dS \int_{\Omega_+} (\mathbf{n} \cdot \mathbf{\Omega}) \, I(\mathbf{r}, \, \mathbf{\Omega}, \, \Lambda) \, d\Omega$ (Ω_+ — полусфера, задаваемая условием $(\mathbf{n} \cdot \mathbf{\Omega}) > 0$, где \mathbf{n} — единичный вектор внешней нормали к S в точке, определяемой $\mathbf{r}; \, \Pi(S)$ — интегральный поток излучения). Принимая во внимание неравенства (11) для $\Pi(S)$ из работы [8] и (5), получаем следующие оценки:

$$\frac{\Lambda J^{-1}}{(1-\Lambda)(1-\gamma)} \left(\alpha \left(1-\Lambda \right) \int_{V} \int dV \int_{\Omega} I_{\infty} \left(\mathbf{r}, \ \Omega, \ \Lambda \right) d\Omega - \gamma J \right) \leqslant N(\Lambda),$$

$$N(\Lambda) \leqslant \frac{\Lambda J^{-1}}{(1-\Lambda)(1-\beta)} \left(\alpha \left(1-\Lambda \right) \int_{V} \int dV \int_{\Omega} I_{\infty} \left(\mathbf{r}, \ \Omega, \ \Lambda \right) d\Omega - \beta J \right).$$
(6)

Здесь $I_{\infty}(\mathbf{r}, \Omega, \Lambda)$ — интенсивность излучения в бесконечной однородной среде V_{∞} при наличии в ее части, идентичной \mathring{V} , источников g (\mathbf{r} , Ω); γ и β — соответственно максимальное и минимальное значения величины $\iiint\limits_V dV' \int\limits_{\Omega} G_{\infty} \left(\mathbf{r}, \ -\mathbf{\Omega}, \ \mathbf{r}', \ \mathbf{\Omega}', \ \Lambda \right) (\alpha - \sigma) \, d\Omega' \text{ при } \mathbf{r} \in S \text{ и } \mathbf{\Omega} \in \Omega_+ \ \left(G_{\infty} \left(\ldots \right) - \alpha \right) (\alpha - \sigma) \, d\Omega'$ функция Грина уравнения переноса для V_{∞}). При $\Lambda \to 1$ из (6) находим такие неравенства:

$$J^{-1}B - \gamma_0 \leqslant N(1) \leqslant J^{-1}B - \beta_0,$$

$$B = \alpha \iiint_V dV \int_{\Omega} I_{\infty}(\mathbf{r}, \Omega, 1) d\Omega,$$
(7)

где $\gamma_0 = \lim_{\Lambda \to 1} (1 - \Lambda)^{-1} \gamma$, $\beta_0 = \lim_{\Lambda \to 1} (1 - \Lambda)^{-1} \beta$. Итак, формулы (6), (7) позволяют оценить $N(\Lambda)$ для любого однородного тела невогнутой формы через характеристики полей излучения в V_∞ , для вычисления которых достаточно знать функцию Грина при наличии в V_{∞} точечного изотропного источника (ее явное

ское выражение получено, например, в [13]).

Найдем с помощью (7) асимптотику для среднего числа рассеяний фотона в консервативно рассеивающем оптически толстом шаре V, содержащем любые источники в V. Воспользовавшись асимптотикой $\int G_{\infty}\left(\ldots\right)d\Omega'$, приведенной в [14], из (7) с помощью ряда преобразований получим

$$N(1) = \frac{3 - x_1}{6} \left[J^{-1} \int \int \int \int (3\tau_0^2 - |\tau'|^2) dV' \int g(\mathbf{r}', \Omega') d\Omega' - 2\tau_0^2 \right] + O(\tau_0), \, \tau_0 \to \infty.$$
(8)

Здесь τ_0 —оптический радиус шара, $\tau' = \alpha \mathbf{r}'$, x_1 —соответствующий коэффициент в разложении индикатрисы рассеяния по полиномам Лежандра (при этом предполагается, что начало системы координат находится в центре шара). В частности, из (8) при $g(\mathbf{r}', \Omega') \equiv C = \mathrm{const}$ (равномерно распределенные источники) и $g(\mathbf{r}', \Omega') = C_1 \delta(\mathbf{r}')$ ($C_1 = \text{const};$ $\delta(\mathbf{r}') - \delta$ -функция) соответственно находим такие асимптотические выражения:

$$N(1) \sim \left(1 - \frac{x_1}{3}\right) \frac{\tau_0^2}{5}, \quad \tau_0 \to \infty;$$
 (9)

$$N(1) \sim \frac{3 - x_1}{6} \tau_0^2, \quad \tau_0 \to \infty.$$
 (10)

Для случая $x_1 = 0$ (сферическая индикатриса рассеяния) формула (9) была выведена ранее в [4]. Если умножить (9), (10) на $(\alpha v)^{-1}$, то, как следует из (4), получим асимптотики для средних длительностей свечения шара при наличии в нем соответственно нестационарных источников $g(\mathbf{r}, \Omega, t) = C_2\delta(t)$ и $g(\mathbf{r}, \Omega, t) = C_3\delta(\mathbf{r})\delta(t)$ (C_2 и C_3 —константы). Другим способом формула для t^* для случая точечного изотропного нестационарного источника, находящегося в центре шара, была найдена в [15].

В заключение заметим, что приведенные в статье соотношения можно эффективно использовать при получении оценок (в виде неравенств) для $N(\Lambda)$, \bar{u} , t^* и тогда, когда рассеивающая среда отлична по форме от шара.

Summary

Some inequalities and asymptotic formulas are found for the average number of photon scatterings in homogeneous nonconcave media, which contain arbitrary internal sources.

Литература

1. Амбарцумян В. А. // Научные труды. Ереван, 1960. Т. 1. 430 с. 2. Соболев В. В. // Астрофизика. 1966. Т. 2, № 2. С. 135—146; 1967. Т. 3, № 2. С. 137—154. 3. Самсон А. М. // ЖПС. 1968. Т. 9, № 4. С. 603—609. 4. Нагирнер Д. И. // Астрофизика. 1972. Т. 8, № 3. С. 353—368. 5. Соболев В. В. // Астрофизика. 1972. Т. 11, № 3. С. 439—454. 7. Роговцов Н. Н., Самсон А. М. // Астрофизика. 1975. Т. 11, № 3. С. 439—454. 7. Роговцов Н. Н. // ДАН БССР. 1983. Т. 27, № 1. С. 34—37. 9. Роговцов Н. Н. // ДАН БССР. 1983. Т. 27, № 1. С. 34—37. 9. Роговцов Н. Н. // ДАН БССР. 1983. Т. 27, № 10. С. 901—903. 10. Роговцов Н. Н. // ЖПС. 1985. Т. 42, № 5. С. 839—843. 11. Роговцов Н. Н. // Изв. АН СССР. ФАО. 1985. Т. 21, № 10. С. 1111—1112. 12. Соболев В. В. Перенослучистой энергии в атмосферах звезд и планет. М., 1956. 392 с. 13. Колесов А. К. // ДАН СССР. 1983. Т. 272, № 1. С. 53—56. 14. Колесов А. К. // Астрофизика. 1984. Т. 20, № 1. С. 133—147. 15. Роговцов Н. Н. // ЖПС. 1986. Т. 44, № 4. С. 659—663.

Институт физики АН БССР

Поступило 22.05.86