ВЛИЯНИЕ ИЗМЕНЕНИЯ НАГРУЗОК НА ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ МОЩНОСТЬЮ ЭНЕРГОБЛОКОВ

Кулаков Г.Т., Артèменко К.И. БНТУ, Минск, Республика Беларусь, ArtsiomenkaKiryl@bntu.by

Неравномерность графиков электрических нагрузок Белорусской энергосистемы, а также планируемый ввод двух энергоблоков Белорусской АЭС, заставляет мощные энергоблоки тепловых электрических станций участвовать в регулировании частоты и перетоков мощности. В то же время для определения оптимальных настроек и структуры системы автоматического управления мощностью энергоблока (САУМБ) и для выбора способа адаптации параметров динамической настройки технологических регуляторов, нужно провести анализ динамических характеристик главных участков регулирования энергоблока в диапазоне от минимальной до максимальной нагрузки.

Динамические характеристики изучались на газомазутном прямоточном котле Лукомльской ГРЭС типа ТГМП-314, объединенном в блок с турбиной K-300-240 ЛМЗ. Рабочим диапазоном данных энергоблоков является нагрузка 100-30 % номинальной мощности (переход в режим переменного давления происходит при нагрузке меньше 70 %). Моноблоки производительностью 1050 т / ч имеют 16 горелок (по 5 т/ч), 2 дутьевых вентилятора, 2 дымососа, 2 вентилятора рециркуляции и 2 регенеративных воздухоподогревателя.

Динамические характеристики энергоблока определялись в виде переходных характеристик по мощности и давлению пара перед турбиной при возмущении суммарной нагрузкой котла. т.е. согласованной подачей топлива, воздуха и питательной воды, а также перемещением регулирующих клапанов турбины, определяемым по давлению рабочей жидкости под золотником сервомоторов турбины [1].

Энергоблок мощностью 300 МВт с целью повышения экономичности процесса в диапазоне от 100 до 30 %, работает в двух режимах [2]:

- от 100 до 70% давление пара постоянное режим постоянного давления. Для уменьшения нагрузки прикрывают регулирующие клапана турбины, уменьшая тем самым расход пара, следовательно уменьшая электрическую мощность генератора;
- во вторичном режиме работы от 70 до 30 % уменьшение электрической мощности достигается за счет того, что блок переходит в режим скользящего, т.е. переменного давления пара перед турбиной. Чем меньше нагрузка, тем меньше давление пара перед турбиной, чтобы обеспечить меньший расход пара перед турбиной при меньшей нагрузке.

Работа энергоблока в широком диапазоне изменения нагрузки приводит к существенному ухудшению динамических характеристик по электрической мощности и давлению пара перед турбиной с уменьшением нагрузки энергоблока. Количественное изменение этих параметров можно оценить с использованием данных таблицы 1, в которой приведены коэффициенты передачи и постоянные времени следующих передаточных функций объектов управления [3]:

 передаточная функция по электрической мощности при скачкообразном изменении задания котельному регулятору нагрузки:

$$W_{N_{\Phi},B_{\rm T}}(p) = \frac{K_1 e^{-\tau_1 p}}{(T_1 p + 1)(\sigma_1 p + 1)},\tag{1}$$

где К₁ – коэффициент передачи, МВт / %;

 τ_1 – время запаздывания по каналу регулирующего воздействия, с;

 T_1 – большая постоянная времени передаточной функции, с;

 σ_1 – меньшая постоянная времени передаточной функции, с.

– передаточная функция по давлению перегретого пара перед турбиной при скачкообразном изменении задания котельному регулятору нагрузки:

$$W_{p_0,B_{\tau}}(p) = \frac{K_2 e^{-\tau_2 p}}{(T_2 p + 1)(\sigma_2 p + 1)},$$
(2)

где К₂ – коэффициент передачи, МПа / %;

 τ_2 – время запаздывания по каналу регулирующего воздействия, с;

 T_2 – большая постоянная времени передаточной функции, с;

 σ_2 – меньшая постоянная времени передаточной функции, с.

передаточная функция по электрической мощности при скачкообразном перемещении регулирующих клапанов турбины:

$$W_{N_{\phi},h_{p\kappa}}(p) = \frac{T_0 p(T_3 p + 1)}{(T_4 p + 1)(T_5 p + 1)},$$
(3)

где T_0 , T_3 , T_4 и T_5 – постоянные времени передаточной функции, с.

– передаточная функция по давлению перегретого пара перед турбиной при скачкообразном перемещении регулирующих клапанов турбины:

$$W_{p_0,h_{pk}}(p) = \frac{K_3(T_6p+1)}{T_7p+1},\tag{4}$$

где К₃ – коэффициент передачи, МПа / %;

 T_6 и T_7 – постоянные времени передаточной функции, с.

Таблица 1 — Изменение величин коэффициентов и постоянных времени передаточных функций объекта регулирования системы автоматического управления мощностью энергоблока в функции от нагрузки

30	50	100
4,8	3,5	1,6
32,5	25,0	11,2
97,0	152,0	101,0
18,2	29,0	19,0
4,8	3,0	1,6
31,4	16,0	6,1
78,4	51,0	56,0
19,6	13,0	14,0
1019,0	509,4	169,8
13,7	7,0	2,3
1008,0	504,0	168,0
128,0	144,0	48,0
-0,7	-0,42	-0,25
27,6	14,0	4,6
540,0	270,0	90,0
	4,8 32,5 97,0 18,2 4,8 31,4 78,4 19,6 1019,0 13,7 1008,0 128,0 -0,7 27,6	4,8 3,5 32,5 25,0 97,0 152,0 18,2 29,0 4,8 3,0 31,4 16,0 78,4 51,0 19,6 13,0 1019,0 509,4 13,7 7,0 1008,0 504,0 128,0 144,0 -0,7 -0,42 27,6 14,0

Для построения динамических характеристик энергоблока 300 МВт будем использовать пакет программного обеспечения Simulink Matlab, принципы работы в котором объяснены в [4].

Передаточная функция (1) аппроксимировалась инерционным звеном второго порядка с условным запаздыванием. На рисунке 1 изобразим динамические характеристики по электрической мощности при скачкообразном изменении задания котельному регулятору мощности для различных значений нагрузки энергоблока с помощью формулы (1) и таблицы 1:

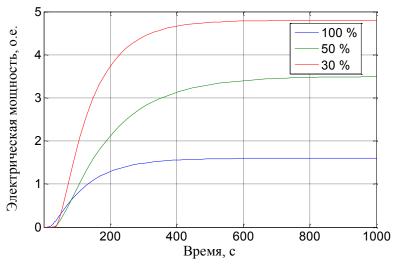


Рисунок 1 — Электрическая мощность при скачкообразном изменении задания котельному регулятору нагрузки

Из анализа динамических характеристик, приведенных на рисунке 1 следует, что коэффициент передачи передаточной функции по электрической мощности при скачкообразном изменении задания котельному регулятору нагрузки с уменьшением нагрузки от 100 до 30 % увеличивается в 3 раза. При этом запаздывание по каналу регулирующего воздействия увеличивается в 2,9 раза. Большая постоянная времени передаточной функции (1) с уменьшением нагрузки от 100 до 50 % увеличивается в 1,5 раза, а затем уменьшается в 1,6 раза, а меньшая постоянная времени увеличивается соответственно при 50 % нагрузке в 1,6 раза, затем при 30 % нагрузке уменьшается в 1,6 раза.

Передаточная функция (2) представляет собой инерционное звено второго порядка с условным запаздыванием. На рисунке 2 построены динамические характеристики по давлению перегретого пара перед турбиной при скачкообразном изменении задания котельному регулятору мощности для различных значений нагрузки энергоблока с помощью формулы (2) и таблицы 1:

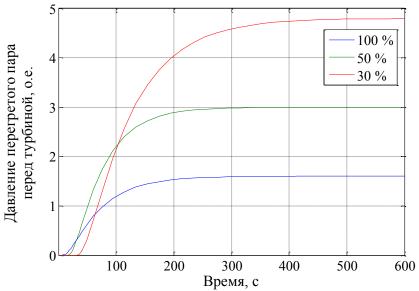


Рисунок 2 – Давление перегретого пара перед турбиной при скачкообразном изменении задания котельному регулятору нагрузки

Коэффициент передачи передаточной функции (рисунок 2) при минимальной нагрузке в 3 раза больше, чем при максимальной, а запаздывание по каналу регулирующего увеличи-

вается в 5,1 раза. Большая и меньшая постоянные времени соответственно увеличиваются в 1,4 раза при изменении нагрузки от 100 до 30 %. Но при этом для 50 % нагрузки большая постоянная времени снижается на 9 % по сравнению с полной мощностью, а меньшая постоянная времени – на 7 %.

Передаточная функция (3) по мощности при возмущении регулирующими клапанами турбины представлена последовательным соединением реального дифференциатора и звена медленного реагирования, т.к. постоянная времени числителя интегро-дифференцирующего звена T_3 меньше постоянной времени знаменателя T_5 . На рисунке 3 изобразим динамические характеристики по электрической мощности при скачкообразном перемещении регулирующих клапанов турбины для различных значений нагрузки энергоблока с помощью формулы (3) и таблицы 1:



Рисунок 3 — Электрическая мощность при скачкообразном перемещении регулирующих клапанов турбины

Время достижения максимального значения отклонения по мощности при половинной нагрузке в 2,6 раза больше, чем при максимальной, а при минимальной нагрузке увеличивается в 5,7 раза по сравнению с максимальной. Полное время регулирования при нагрузке, равной 50 %, в 3 раза больше, чем при 100 %, а при 30 % нагрузке увеличивается в 5 раз по сравнению с максимальной.

Передаточная функция (4) аппроксимированы в виде звена медленного реагирования. Следует отметить, что при открытии регулирующих клапанов турбины давление перегретого уменьшается, т.е. коэффициент передачи по давлению отрицательный. На рисунке 4 построены динамические характеристики по давлению перегретого пара перед турбиной при скачкообразном перемещении регулирующих клапанов турбины для различных значений нагрузки энергоблока с помощью формулы (4) и таблицы 1:

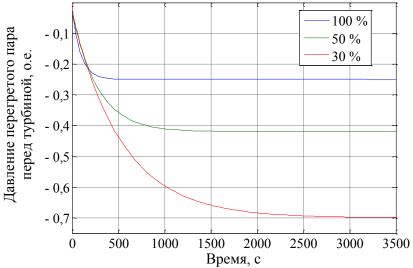


Рисунок 4 — Давление перегретого пара перед турбиной при скачкообразном перемещении регулирующих клапанов турбины

Коэффициент передачи передаточной функции (рисунок 4) при минимальной нагрузке в 2,8 раза больше, чем при максимальной, а при половинной нагрузке больше в 1,7 раза. Время достижения установившегося значения давления перегретого пара при 50 % нагрузке в 3 раза больше, чем при 100 %, а при 30 % нагрузке увеличивается в 6 раз по сравнению со 100 %.

ВЫВОДЫ

- 1. Динамические характеристики энергоблока как по мощности, так и по давлению перегретого пара в режиме скользящего давления существенно ухудшаются с уменьшением нагрузки.
- 2. Этот фактор необходимо учитывать при синтезе оптимальной структуры и параметрической оптимизации САУМБ, работающей в широком диапазоне изменения нагрузок, с целью сохранения высокого качества поддержания задания мощности и минимизации отклонений давления перегретого пара перед турбиной при глубоких изменениях нагрузки.
- 3. Для этого необходимо вместо поиска оптимальных настроек для всего диапазона изменения мощности использовать адаптивные настройки, изменяющиеся вместе с увеличением или снижением нагрузки энергоблока.
- 4. Для расчета адаптивных настроек необходимо знать величины коэффициентов передачи, постоянных времени и условных запаздываний для любого из уровней нагрузки энергоблока, чего можно добиться при помощи аппроксимации их функциональных зависимостей.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Койчу, М.Б. Особенности экспериментальных динамических характеристик парогенератора ТГМП-314 моноблока мощностью 300 МВт / М.Б. Койчу // Теплоэнергетика. 1976. № 2. C. 22-27.
- 2. Иванов, В.А. Режимы мощных паротурбинных установок / В.А. Иванов. 2-е изд., перераб. и доп. Л. : Энергоатомиздат, 1986. 247 с.
- 3. Теория автоматического управления теплоэнергетическими процессами: учеб. пособие / Г. Т. Кулаков [и др.]; под общ. ред. Г. Т. Кулакова. Минск: Выш. шк., 2017. 238 с.
 - 4. Дъяконов, В.П. Matlab 7. R2006, R2007 / В.П. Дъяконов. М.: ДМК Пресс, 2008. 768 с.