Взаимодействие атомов железа и углерода в системе «Fe - C (графит)» в литейных сплавах

Студенты гр. 641251 Рогов И.С., гр. 631251 Прохоров И.В. Научный руководитель — Вальтер А.И. Тульский государственный университет Россия, Тула

Природа полиморфизма железа является до настоящего времени сложной проблемой, несмотря на большую изученность двойных металлических систем «железо - элемент». Механизм физико-химического взаимодействия легирующих элементов с железом остается по многим параметрам не ясным, особенно в области атомно-электронного взаимодействия элементов в условиях сильного отклонения от равновесия.

Современная теория динамических систем, а также физика неравновесных состояний позволяет поновому взглянуть на процессы, происходящие в металлических системах на атомно-электронном уровне.

Атом углерода характеризуется электронной конфигурацией 1s²2s²2p², существует несколько полиморфных модификаций углерода. Между атомами углерода в графите действуют сильные ковалентные связи, атомы располагаются в углах правильных шестиугольников, расстояние между центрами атомов равно 1,415 Å. В ковалентных связях заняты три валентные электроны каждого атома, четвертые валентные электроны коллективизированы и это придает графиту высокую электропроводность, непрозрачность. Оценку энергетического взаимодействия элементов в системе «Fe - C (графит)» проводили на основе расчета энергии электронных уровней атомов железа и углерода по следующим соотношениям:

$$E_n = -\frac{1}{2}m\mathcal{G}^2; \tag{1}$$

Эту величину можно выразить также через R- радиус атома (иона), подставив соотношение

$$g^2 = \frac{k_0 z e^2}{mR_n}$$
 в выражение $E = -\left(\frac{1}{2}\right) m g^2$, что дает:

$$E_n = -\frac{K_0 e^2}{2R_n} = -K_0 \frac{e^2}{2R}; (2)$$

Энергии электронных уровней атомов железа и углерода в металлической системе «Fe - C» (графит) выразим также через R - радиусы ионов в виде суммы энергий электронных уровней атомов. Для двухкомпонентной системы уравнение (2) принимает следующий вид:

$$E = E_{n_1} + E_{n_2} = -K_0 \frac{e^2}{2R_1} - K_0 \frac{e^2}{2R_2} = -K_0 \frac{e^2}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right);$$
 (3)

где R_1 , R_2 - радиусы атомов (ионов) компонентов, составляющих сплав; K_o - постоянная Больцмана; е - заряд электрона.

Уравнение (3) позволяет рассчитать энергию электронных уровней взаимодействующих атомов в металлической системе и на основе этого определить температуру сплава, так как энергия системы эквивалентна ее температуре.

Исходя из условия известных межатомных расстояний в графите (1,415 Å), можно определить ковалентный радиус атома углерода, который будет равен 0,7075 Å. Исследование электронного строения сплавов системы «Fe-C (графит)» позволило построить диаграмму, которая представлена на рис.1. Как видно из рис.1, линия ликвидус **ABD** имеет минимум в точке **B**. Точке **B** соответствует температура 1428 °C и концентрация 2,012 % (вес.).

На линии ликвидус **AB** атомы углерода находятся в ионизированном состоянии; при концентрации углерода $1,2\cdot10^{-4}$, 0,026, 0,134, 0,168 % (вес) атомы углерода находятся в состоянии ионизации C^{9} . (ядро), $C^{9,0}$. (ядерное облако), C^{6+} , C^{5+} . С повышением концентрации до 0,56, 0,69, 0,85 % атомы углерода переходят в состояние ионизации C^{4+} , C^{3+} , C^{2+} . Далее, с увеличением концентрации до 1,07, 1,3, 1,5, 1,7, 1,9 % ионизация атомов углерода уменьшается до уровня C^{1+} , $C^{0,76+}$, $C^{0,54+}$, $C^{0,33+}$, $C^{0,12+}$. При концентрации 2,012 % и температуре 1428 °C атомы углерода находятся в расплаве в состоянии ионизации C^{0} (нулевая ионизация). Атомы железа в области сталей, на линии ликвидус **AB**, не ионизированы и находятся в состоянии F^{0} , т.е. имеют нулевую ионизацию. Межатомное взаимодействие осуществляется за счет перекрытия электронных оболочек атомов железа и углерода. С увеличением концентрации углерода более 2,012 % (вес.) на линии ликвидус **BD** происходит ионизация атомов железа до уровня F^{0+} , F^{0+} , F^{0+} при содержании углерода

 $2,78,\ 3,28,\ 4,07,\ 4,27\ \%$. При дальнейшем повышении концентрации до $4,75,\ 5,03,\ 5,24,\ 5,71,\ 6,60,\ 6,67\ \%$ (вес.) ионизация атомов железа растет до уровня Fe^{5+} , Fe^{6+} , Fe^{7+} , Fe^{9+} , Fe^{10+} .

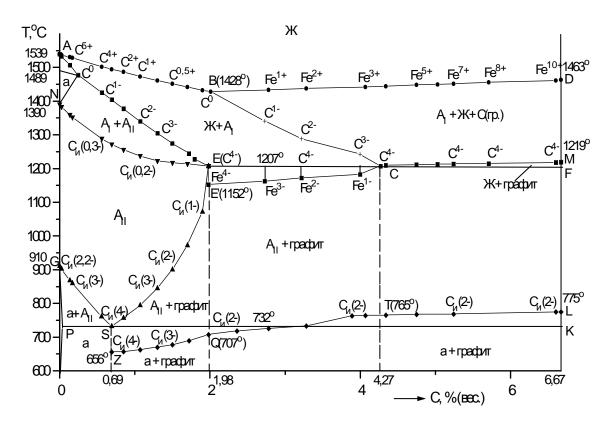


Рис.1. Диаграмма состояния сплавов «Fe - C (графит)» с ионными связями атомов углерода в графите на линии ZQTL

Минимум температуры в точке ${\bf B}$ (1428 $^{\rm o}$ C) при концентрации 2,012 % (вес.) углерода можно объяснить различным межатомным взаимодействием элементов в области сталей и в области чугунов.

С изменением радиуса атома происходит также изменение энергии электронных уровней взаимодействующих атомов и, соответственно, температуры сплава.

УДК 621. 179

Изучение способов производства поршней

Магистрант Сошенко А.А. Научный руководитель – Довнар Г.В. Научный консультант – Арабей А.В. Белорусский национальный технический университет г. Минск

В конструкции поршня принято выделять следующие элементы: головку 1 и юбку 2. Головка включает днище 3, огневой (жаровой) 4 и уплотняющий 5 пояса. Юбка поршня состоит из бобышек и направляющей части (рисунок 1).

Сложная конфигурация поршня, быстро меняющиеся по величине и направлению тепловые потоки, воздействующие на его элементы, приводят к неравномерному распределению температур по его объему и, как следствие, к значительным переменным по времени локальным термическим напряжениям и деформациям рисунок 2.

Для изготовления поршней в настоящее время в основном используют алюминиевые сплавы, реже серый или ковкий чугун, а также композиционные материалы.