Еженков Г.Г., Мишкина М.А., Опекунова Т.Э., Панков А.Б., Жук Г.В.

ГАЗОПЛАМЕННЫЕ АНТИКОРРОЗИОННЫЕ ЗАЩИТНЫЕ ПОКРЫТИЯ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ ЭЛЕКТРОЭНЕРГЕТИКИ

Белорусский национальный технический университет Минск, Беларусь

Заземляющие устройства являются неотъемлемой частью электрических устройств распределительных и электрических систем. На них возлагаются многочисленные функции по меспечению надежной и безопасной работы электрических установок в выбранном или заданном для них режиме. Защитное заземление обеспечивает безопасность обслуживающего персонала. Заземление грозозащиты служит для отвода токов молнии в землю для защиты разрядников или молниеотводов (стержневых или тросовых).

Совершенствование способов передачи электрической энергии, ухудшение экологической обстановки ставит новые, зачастую специфические требования к заземляющим устройствам.

Одной из основных проблем заземлителей и их элементов электрических сетей и подстанций является повышение их коррозионной стойкости. Особо остро эта проблема стоит для вертикальных заземлителей. Наибольшей интенсивностью обладает коррозия вертикальных заземлителей на границе раздела "земля-воздух". Коррозия вертикальных заземлителей приводит к большим потерям металла и может привести к их полному разрушению на незначительной глубине от поверхности грунта. В связи с этим наряду со специальными методами контроля предусмотрен и визуальный контроль степени коррозии путем раскопки грунта на глубину до 30 см.

Нами предпринята попытка раскрыть механизм коррозии заземляющих устройств электрических систем и подстанций в зоне перехода "воздух-земля" и на основании теоретических изкспериментальных исследований разработать технологические методы ее уменьшения.

На поверхности металла, погруженного в почву с определенной степенью влажности и наличием в ней растворимых солей кислот и щелочей, включая деполиризаторы и ангибиторы, бычно идут реакции двух типов. Одна из них - реакция окисления или анодная реакция, в результате которой освобождаются электроны, например, $Fe \rightarrow Fe^{+2} + 2e^-$, а другая – реакция восстановления или катодная реакция, в результате которой присоединяются электроны, освобожденные в результате реакции окисления:

$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-; \tag{1}$$

$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-;$$
 (1)
 $O_2 + 2H^+ + 4e^- \rightarrow 2H_2O;$ (2)

$$2H^{+} + 2e^{-} \rightarrow H_{2}. \tag{3}$$

Вследствие одновременного протекания анодных и катодных реакций на поверхности металла создаются электрохимические элементы. Место протекания анодных и катодных реакций, т.е., анодов и катодов коррозионной ячейки определяется множеством факторов, в том числе, дефектами кристаллической решетки, содержанием кислорода и его флуктуацией на поверхности металла и т.д. Наибольший интерес представляет флуктуация кислорода на поверхности вертикальных заземлителей.

Так как на границе раздела "земля-воздух" концентрация кислорода в воздухе и приповерхностных слоях грунта с одной стороны и в грунте на некоторой глубине со второй стороны будет различной, то между участком заземлителя, находящимся в воздухе и приповерхностных слоях грунта и участком, лежащим на некоторой глубине от поверхности раздела, будет возникать разность электрических потенциалов Е. Величина возможных электрических потенциалов на поверхности заземлителя зависит от концентрации кислорода в воздухе и в грунте, температуры, водородного показателя (ионной активности) рН и др. Наличие в грунте влаги, солей кислот и щелочей, сульфатвосстанавливающих бактерий и т.п. способствует образованию электролитов вокруг заземлителя, таким образом, заземлитель можно рассматривать как гальванический элемент.

В общем случае реакцию в гальваническом элементе можно записать в следующем виде:

$$1L + mM + ... \rightarrow qQ + rR + ..., \tag{4}$$

где 1 – моль вещества L; m – моль вещества M и т.д. реагируют с образованием q молей вещества Q, молей вещества R и т.д.

Соответствующее изменение энергии Гиббса ΔG для этой реакции определяется по разности суммарной молярной энергии продуктов реакции и реагирующих веществ:

$$\Delta G = (\mathbf{q} \cdot \mathbf{G}_{\mathbf{Q}} + \mathbf{r} \cdot \mathbf{G}_{\mathbf{R} + \dots}) - (\mathbf{l} \cdot \mathbf{G}_{\mathbf{L}} + \mathbf{m} \cdot \mathbf{G}_{\mathbf{M}} + \dots), \tag{5}$$

где G_O – молярная энергия Гиббса вещества G и т.д.

Аналогичное выражение будет и для каждого вещества в стандартном, произвольно выбранном состоянии, при этом символ G₀ обозначает стандартную молярную энергию Гиббса:

$$\Delta G0 = (q \cdot GQ + r \cdot GR + ...) - (1 \cdot GL + m \cdot GM + ...), \tag{6}$$

Разность энергий Гиббса вещества L в любом заданном и в стандартном состоянии определяется из выражения

$$L(Q_L - Q^L) = IRT \cdot lna_L = RT \cdot lna^L$$
(7)

где R = 8,314 Дж/(K·моль) — газовая постоянная; T — абсолютная температура, ${}^{\circ}K$; a_L - так называемая активность вещества L, представляющая собой скорректированную концентрацию или парциальное давление вещества L.

Вычитая из уравнения (5) уравнение (6) и подставляя соответствующие активности, получаем выражение:

$$\Delta G - \Delta G^0 = RT \cdot \ln \frac{a_Q^q \cdot a_R^r \cdot ...}{a_L^i \cdot a_R^m \cdot ...}$$
 (8)

Если реакция равновесна, △G=0 и

$$\frac{\mathbf{a}_{\mathbf{Q}}^{\mathbf{q}} \cdot \mathbf{a}_{\mathbf{R}}^{\mathbf{r}} \cdot \dots}{\mathbf{a}_{\mathbf{I}}^{\mathbf{l}} \cdot \mathbf{a}_{\mathbf{M}}^{\mathbf{m}} \cdot \dots} = \mathbf{K}, \tag{9}$$

где К - константа равновесия реакции. Тогда

$$\Delta G^{0} = -RT \cdot \ln K \tag{10}$$

С другой стороны, когда активность всех реагирующих веществ и продуктов реакции равна единице, логарифм отношения произведений активностей равны нулю

$$\ln i = 0 \text{ in } \Delta G = \Delta G^0 \tag{11}$$

Но так как

$$\Delta G = -E \cdot \mathbf{n} \cdot \mathbf{F},\tag{12}$$

$$\Delta G^0 = -E^0 \cdot \mathbf{n} \cdot \mathbf{F},\tag{13}$$

где E^0 — э.д.с. элемента, реагенты и продукты реакции которого находятся в стандартном состоянии (их активности равны единице); п — число электронов или химических эквивалентов, участвующих в реакции; F — число Фарадея (96500 Кл/моль).

Тогда в соответствии с уравнением (8) имеем:

$$E=E^{0}-\frac{RT}{nF}\ln\frac{\mathbf{a}_{Q}^{q}\cdot\mathbf{a}_{R}^{r}\cdot...}{\mathbf{a}_{1}^{1}\cdot\mathbf{a}_{m}^{m}\cdot...}$$
(14)

Это уравнение с точки зрения электрохимического механизма коррозии выражает значние э.д.с. элемента в зависимости от активности реагирующих веществ и продуктов реакции пого элемента называется уравнением Нернста.

Активность а_L растворенного вещества L равна его концентрации в молях на 1000 раммов воды (молярности), умноженной на поправочный коэффициент у, называемый коэффициентом активности. Он зависит от температуры и концентрации вещества. Если вещество входится в газообразном состоянии, то его активность равна его летучести и при обычных давлениях численно равна давлению, выраженному в атмосферах.

Поскольку э.д.с. элемента представляет собой алгебраическую сумму двух электродвых потенциалов или, как в нашем случае, двух полуэлементов, легко рассчитать разность потенциалов полуэлементов заземлителей, лежащих на поверхности и на некоторой глубине в прунте в соответствии с формулой (14).

Например, для электродной реакции железа Fe2+ + 2e⁻ → Fe, n = 2, имеем:

$$E_{Fe} = E_{Fe}^{0} - \frac{RT}{2F} \ln \frac{a_{Fe}}{a_{Fe}^{2+}}, \tag{15}$$

где E_{Fe}^0 – так называемый стандартный потенциал железа (равновесный потенциал железа в контакте с Fe^{2+} при $a_{Fe}^{2+}=1$); a_{Fe} – активность железа ($a_{Fe}=1$); a_{Fe}^{2+} – активность ионов железа, равная произведению молярности на коэффициент активности.

Значения стандартных потенциалов приводятся в справочной литературе по химии.

Электродная реакция	Стандартный потенциал Е ⁰ при 25°C, В
$Fe^{2+} + 2e^{-} = Fe$	-0,440
$Cu^+ + e^- = Cu$	0,521
$Cu^{2+} + 2e^- = Cu$	0,337
$Zn^{2+} + 2e^{-} = Zn$	-0,763
$Al^{3+} + 3e^{-} = Al$	-1.660

Таблица 1 – Значения стандартных потенциалов для некоторых металлов

Величина э.д.с. в значительной степени зависит от ионной активности. Как показали исследования [1], при рH=4...10 скорость коррозии зависит от скорости диффузии кислорода к эступным катодным поверхностям. Величина э.д.с., возникающая за счет флуктуации кислорода по длине заземлителя может достигать достаточно больших значений.

Так, например, при довольно близких к реальным условиям окисления (парциальное завление кислорода, как и в воздухе, принято равным 0,2 атмосферы; активность железа как твердого вещества $a_{Fe} = 1$; активность ионов железа $a_{Fe}^* = 0.1$; ионная активность грунта pH = (среднее между 4 и 10); R==8,314 Дж/(К·моль); T = 298,2 °K (25 °C); F =95500 Кн/моль и при переходе от натуральных логарифмов к десятичным расчет коэффициента RT/2F дает значенж последнего, равное0,0592 В. Этот коэффициент часто используют при расчете электрических потенциалов гальванического элемента.

Первая часть железного полуэлемента находится в воздухе и приповерхностном влаж ном грунте с давлением кислорода 0,2 атмосферы (как и на воздухе), вторая часть — на некоторой глубине, где давление кислорода незначительное, близкое к нулю. Для примера возьмен 0,01 атмосферы.. Тогда потенциал первой части электрода:

$$0.5H_2O + 0.25O_2 (0.2 \text{ at}) + e^- \rightarrow OH^-$$

 $E_1 = -0.440lg \frac{a_{OH^-}}{0.2^{0.25}};$

Потенциал второй части:

$$0.5H_2O + 0.25O_2(0.1 \text{ at}) + e^- \rightarrow OH^-$$

 $E_2 = -0.440 - 0.0592 \lg \frac{a_{OH}^-}{0.1^{0.25}}$

Тогда разность потенциалов между верхней и нижней частями заземлителя за сче флуктуации кислорода составит:

$$E_{Fe} = E_2 - E_1 = -0.0592 \lg \frac{0.2^{0.25}}{0.1^{0.25}} = -\frac{0.0592}{4} (\lg 0.2 - \lg 0.1) = -0.00368 B$$

При парциальном давлении кислорода 0,01 атмосферы разность потенциалов уже соствит -0,0193 В, т.е., почти на порядок вше.

Отрицательное значение э.д.с. указывает на то, что в любом элементе дифференциальной аэрации электрод, контактирующий с кислородом при низком давлении последнего стремится быть анодом, а при более высоком — катодом. На поверхности катода образуется электропроводящий оксид железа, который в контакте с аэрированными растворами в грунте, действует как кислородный электрод. На поверхности анода образуется Fe^{2+} и он действует как железный электрод. Следовательно, при протекании электрического тока между анодным и катодным участками заземлителя на анодной части происходит интенсивный процесс коррозии с образованием питингов, что, в конечном итоге приводит к разрушению анодной части заземлителя.

Исходя из основоположений электрохимической модели коррозии анодной части вер тикальных заземлителей можно рекомендовать следующие основные методы повышения коррозионной стойкости заземлителей:

- 1. Изоляцию приповерхностной части заземлителя на глубину порядка 0,3...0,35 м битумным покрытием, уменьшающим флуктуацию кислорода на заземлителе по глубин Однако, следует отметить, что этот метод значительно снижает электрическое сопротивленж заземляющего устройства и требуется увеличивать глубину его погружения в грунт.
- 2. **Катодную защиту**. В этом случае на поверхность заземлителя наносят покрытие и другого металла с более отрицательным потенциалом, или поверхность обрабатывают таким образом, чтобы ее потенциал достиг более отрицательной величины, чем у поверхности, и подвергнутой обработке. Примерами давно известной обработки такого рода может служить горячее гальванирование нанесение на сталь цинкового покрытия путем погружения в расплавленный цинк, а также электроосаждение, при котором покрытие наносят непосредственю на сталь (никелирование, хромирование и т.п.). Однако, как показала практика, цинковые покрытия относительно стойки в условиях сельской местности. В грунтах с осадками промышленной зоны средний срок их службы снижается почти в два раза. Кроме того, цинковые по

крытия весьма чувствительны к воздействию серной кислоты, содержащейся в загрязненном воздухе и грунте. Никелевые, хромовые и оловянные покрытия не корродируют в нейтральных или близких к нейтральным средам, но мене устойчивы в кислых и щелочных средах, т.е., они также взаимодействуют с кислотами и щелочами, подвергаясь разрушению.

- 3. Создание и обеспечение развития на металлической поверхности заземляющих устройств защитных (пассивирующих) пленок. Пассивирующие пленки на металлической поверхности снижают скорость коррозии за счет уменьшения величины гальванического тока. В работе [2] отмечается, что получение на металлической поверхности некристаллической (аморфной) структуры значительно снижает скорость коррозии металла. Другим примером того, что аморфные пленки обеспечивают высокую коррозионную стойкость, является применение в промышленности аморфного сплава системы Ni-Cr-B-C. Исследованиями [3] установленю, что величина тока пассивации для этого сплава почти на два порядка меньше, чем для аналогичного по составу сплава с кристаллической решеткой. Такая способность аморфных покрытий снижать ток пассивации является следствием уменьшения потоков ионов с анодной части.
- 4. Аморфные слои на металлической поверхности можно получать имплантацией ионов, напрмер хрома, лазерной закалкой и лазерным легированием, электроосаждением сплава-покрытия, содержащего компоненты, способствующие образованию аморфных пленок и т.д. Путем нанесения покрытий аморфной структуры можно изменить и потенциал металлической поверхности до величины, характерной для иммунной области коррозии. Этот метод защиты заземляющих устройств от коррозии представляется весьма перспективным, однако их применение в настоящее время сдерживается сложностью оборудования, большой трудоемкостью и высокой стоимостью.
- 5. Газотермическое напыление порошковых сплавов системы Ni-Cr-B-Si на часть поверхности заземлителя, наиболее подверженному коррозии. В НИЛ упрочняющих технологий Белорусского национального технического университета разработан способ повышения коррозионной стойкости вертикальных заземлителей в стационарных условиях путем газотермического напыления порошковых материалов системы Ni-Cr-B-Si с последующей термической обработкой напыленных слоев. В соответствии с разработанной технологией сначала нижняя часть заземляющего устройства на длине до 0,5 м подвергается дробеструйной обработке для очистки от загрязнений и создания на поверхности шероховатой поверхности. После подготовки поверхности на нее наносится тонкий (0,1 ...0,5 мм) слой порошкового материала типа $\Pi\Gamma$ -12H-0,1, содержащего (8...14)%Cr, (1,7...2,5)%B, (1,2...3,2)%Si, (0,3...0,6)%C, (1,2...3,2)% Fe, остальное – никель. Напыление производится на бутан-пропановой смеси с киспородом. Так как пористость напыленных покрытий составляет обычно до 20%, что может привести к возникновению локальной коррозии и отслаиванию покрытия, для получения плошного беспористого покрытия применяется его термическая обработка (оплавление). При яюм изделие вместе с покрытием нагревается до температуры, близкой к температуре плавления покрытия (1050...1100°C). Оплавление можно производить с нагревом ТВЧ, в соляных ваннах, газопламенными кольцевыми горелками, в пламенных печах и т.д. Наиболее распространенным и универсальным способом оплавления покрытий является газопламенное оплавление.
- 6. Покрытия порошковыми материалами системы Ni-Cr-B-Si позволяют уменьшить электрохимический потенциал, возникающий на погруженной в землю части заземляющего устриства за счет флуктуации кислорода по длине заземлителя, и способствует образованию защитных пленок, снижающих величину тока пассивации.
- 7. Газопорошковая наплавка на часть поверхности заземляющего устройства. В лаборатории разработана мобильная технология нанесения покрытий газопорошковой наплавкой непосредственно в реальных условиях эксплуатации. Суть применения газопорошковой наплавки самофлюсующимися сплавами на основе никеля в полевых условиях заключается в следующем: в зоне перехода "земля-воздух" заземляющего стержня производится очистка его поверхности от грунта и продуктов коррозии и на очищенную поверхность производится наплавка с оплавлением защитного коррозионностойкого покрытия. Наплавка осуществляется на пропан-бутановой смеси с кислородом.

8. Лабораторные и эксплуатационные испытания показали, что вертикальные заземлители с напыленным и оплавленным покрытием порошковыми материалами системы Ni-Cr-B-Si практически не корродируют.

Заключение

В настоящей работе впервые предпринята попытка с использованием термодинамического подхода объяснить причины интенсивного разрушения вертикальных заземлителей в зоне "земля-воздух". Вместе с тем, следует отметить, что такой подход обычно характеризует склонность к коррозии за счет флуктуации кислорода в среде, окружающей заземлитель, но не скорость коррозии. В тоже время, как показывает практика, склонность к коррозии может быть значительной, а скорость коррозии может оказаться достаточно низкой. Для определения скорости коррозии необходимо привлечение кинематического подхода, т.е., необходимо рассматривать соотношение между э.д.с. (склонностью к коррозии) и плотностью тока (скоростью коррозии), процессы пассивации поверхности и химические реакции, залечивающие пассивирующие пленки, что требует дальнейших исследований. Предложены и апробированы технологии (стационарная и мобильная) нанесения защитных коррозионностойких покрытий на разрушаемые поверхности вертикальных стержней в зоне перехода "земля-воздух".

ЛИТЕРАТУРА

1. Whitman W., Russell R., Ind End Chem, 1924. V/ 16, P265. 2. Revesz A.L., Kruger I., Pasof Metals, Frankenthal R. P., End., Electrochem. Soc., Princeton, №1., 1979, P. 137...155. 3. Hashimoto K., Osaka K., Masumoto T., Shimodaira S., Corrosion Sci., 16-71 (1976)

УДК 621.793

Адаменко Д.В. (студент гр. 103415), Сокоров И.О.

К ВОПРОСУ ОБ ИССЛЕДОВАНИИ ИЗНАШИВАНИЯ МАТЕРИАЛОВ ПРИ ФРЕТТИНГ-КОРРОЗИИ

Белорусский национальный технический университет Минск, Республика Беларусь

Термин фреттинг используется для обозначения малого колебательного скольжения между поверхностями двух контактирующих тел. Амплитуда такого движения обычно составляет $1-100\,$ мкм. Изнашивание, возникающее при таком движении, называют фреттингизнашиванием [1].

Различают два вида фреттинг-изнашивания в зависимости от механических факторов и факторов, связанных с окружающей средой. Если повреждение при фреттинге вызвано циклическим нагружением, стимулирующим появление поверхностных усталостных трещин, в конечном итоге приводящим к катастрофическому разрушению, то используют термин фретинге-усталость. Вид фреттинга, при котором преобладают химические реакции, получил название фретинге-коррозии. Как правило, оба типа фреттинга протекают одновременно. Циклическое микроперемещение вызывает разрушение защитной (например, оксидной) пленки, покрывающей поверхность металла. Обнажившийся металл легко окисляется, а продукты окисления могут действовать как абразив, приводя к повреждению поверхности.

Относительное скольжение является необходимым условием образования фреттингкоррозии. При постоянной частоте колебаний изменение амплитуды относительного скольжения приводит к изменению скорости относительного перемещения поверхностей, что может сказываться на условиях трения. Это, в свою очередь, может привести к изменению интенсивности развития фреттинг-коррозии [2].

Некоторые экспериментальные данные показывают, что фреттинг-коррозия начинается