Анализируя одновременно выражения (1) и (15) приходим к следующему вывод Нормальные напряжения σ_x изменяются по высоте сечения по закону кубической параболь но не по линейному закону как установлено в курсе «Сопротивление материалов». Причё максимальные напряжения при $y=\pm\frac{h}{2}$ могут быть как большие, так и меньше по величине о напряжений, определяемых по методу сопротивления материалов и это зависит от соотношения между шириной и высотой поперечного сечения стержня. В стержне, нагруженно распределённой нагрузкой напряжение σ_y отличны от нуля. Касательные напряжения полученные методами теории упругости и сопротивления материалов, не отличаются друг о друга.

ЛИТЕРАТУРА

1. Феодосьев В.Н. .Сопротивление материалов. Наука, Москва, 1972. 2. Ван-Цзи-ж Прикладная теория упругости. Физматгиз, Москва, 1959.

УДК 621.18.654

Апетёнок П.А., Абу Сахьюн Вассим, Николаев В.А.

ПРИМЕНЕНИЕ ПК В ПРОЕКТИРОВАНИИ И РАСЧЁТЕ МНОГОЗВЕННОГО МЕХАНИЗМА В ПРИЛОЖЕНИИ EXCEL

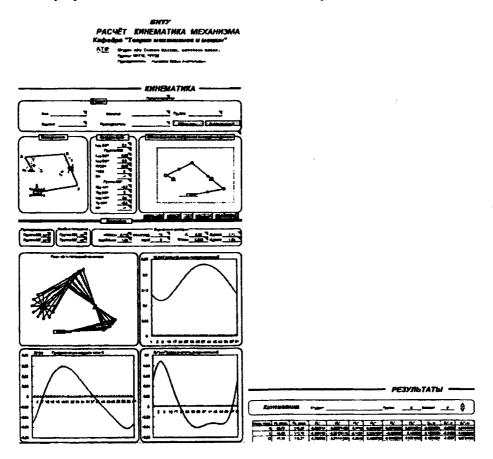
Белорусский национальный технический университет Минск, Беларусь

С развитием информационных технологий, в настоящее время широко используются возможности ПК для проектирования различных механизмов. Это обусловлено высоким требованиями к надёжности и долговечности машин и их элементов, что и определяет росконкурентоспособности изделий, разработанных с помощью многокритериального подхода проектированию оптимальной конструкции. Данная работа посвящена теме проектирования расчёта многозвенного механизма с помощью ПК. Задача программы заключается с определении различных параметров механизма (кинематика, силовой расчёт) по заданным параметрам. В приложении Excel производится расчёт и отображение графической информации этого механизма, который может использоваться в различных области машиностроения.

Исходными данными для проектирования являются:

- Геометрические параметры механизма
- Масса каждого звена
- Угловая скорость вращения кривошипа
- Моменты инерции звеньев механизма

После ввода исходных данных, автоматически производится расчёт для каждоп положения механизма через 6°, и постросние графической информации.


Программа условно разбита на 2 части: кинематику и силовой расчёт.

- В первой части отображаются: базовая схема механизма; область ввода размеров; схема механизма, построенная по введённым данным; область диагностики; план 12-ти положений график функции положения, аналогов скорости и ускорения ползуна; числовые данных результатов кинематического расчёта.
- Во второй части отображаются: область ввода рабочей нагрузки для каждого положении механизма через 6°; область ввода угловой скорости кривопципа, массы и моментов инерции звеньев; график рабочей нагрузки; диаграмма амплитуды гармоник; годограф главного вектора

сил инерции; график движущего момента; график реакции на ползун; годографы реакций в парнирах; числовые данные результатов силового расчёта.

На рисунках представлены изображения рабочего окна программы.

Следует отметить, что программа проста в использовании. Имеет интуитивно понятный интерфейс. Использование данной программы значительно сокращает время проектирования и расчёта многозвенного механизма. Сразу после ввода исходных данных можно проанализировать всю полученную информацию: в виде различных графиков, построенной схеме механизма, результатам кинематического и силового расчётов.

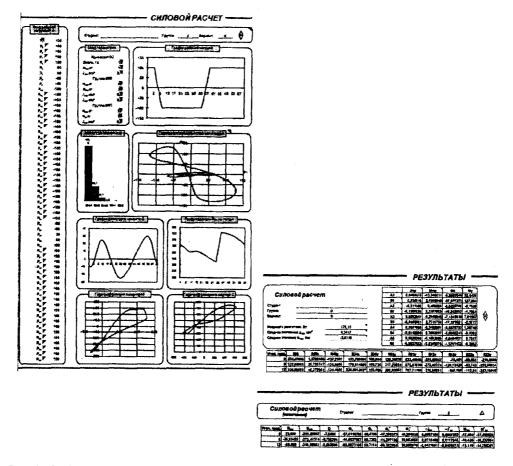


Рис. 1. Изображение окна программы (силовой и кинематический расчёт показаны частично).

Данная программа может успешно использоваться при курсовом проектировании по дисциплине «Теория механизмов и машин». В программе предусмотрен ввод имени, фамилии, номера группы студента; номера варианта; ИФО преподавателя. И можно распечатать все результаты на 5 страниц формата A4.

ЛИТЕРАТУРА

1. Теория механизмов, машин и манипуляторов. Филонов И.П., Анципорович П.П., Акулич В.К. – Мн.: Дизайн ПРО, 1998 – 656с.

УДК 621.81

Капуста П.П., Швец И.В.

ПРОГНОЗИРОВАНИЕ ХАРАКТЕРИСТИК СОПРОТИВЛЕНИЯ УСТАЛОСТИ КРИВОЛИНЕЙНЫХ ПРОКАТНЫХ ОПОР

Белорусский национальный технический университет Минск, Беларусь

Сократить сроки создания новых конструкций машин стало возможным благодаря использованию имитационного моделирования. Проектируемая конструкция машины представляется в виде полномасштабной виртуальной модели и рассматривается как сложная механическая несущая система взаимосвязанных и взаимозависимых подсистем. Проведение эксперимента на такой модели соответствует натурным испытаниям, проводимым в