4. P e r, R i m m e r. A remarkable district heating system / Per Rimmer // New of DHDB. $-2003. - N_{2} 2. - P. 51-55.$

5. С е д н и н, В. А. Теория и практика создания автоматизированных систем управления теплоснабжением / В. А. Седнин. – Минск.: БНТУ. – 2005. – 192 с.

6. С е м е н о в, В. Г. Теплоснабжение городов Пекин – Дрезден – Таллинн / В. Г. Семенов // Новости теплоснабжения. – 2004. – № 9. – С. 47–54.

7. L a r s, G u l l e v. Introduction of incentive tariffs – a benefit for the environment / Lars Gullev // New of DBDH. – $2005. - N_{2} 1. - P. 12-14.$

8. H a n s, B j o r k. From Greenfield to a new district heating system / Hans Bjork, Erik Steen // New of DBDH. -2005. $- N \ge 1$. - P. 18-21.

9. F l e m m i n g, U l b j e r g. Low temperature heat sources / Flemming Ulbjerg // New of DBDH. $-2003. - N_{2} 2$.

10. П и к, М. М. Выбор температурного графика регулирования отпуска тепла в системах централизованного теплоснабжения / М. М. Пик, И. А. Смирнов, Р. Л. Ермаков // Теплоэнергетика. – 1974. – № 11. – С. 16–21.

Представлена кафедрой ТЭС

Поступила 28.12.2006

УДК 536.46: 621.4

ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНОГО ГРАДИЕНТА, ВОЗНИКАЮЩЕГО ПРИ ГОРЕНИИ АЛЬТЕРНАТИВНЫХ МОТОРНЫХ ТОПЛИВ

Канд. техн. наук АССАД М. С.

Барановичский государственный университет

Энергоэкологические показатели двигателя внутреннего сгорания существенно зависят от вида применяемого топлива. Сгорание смеси топлива с окислителем (кислородом воздуха) является главным процессом рабочего цикла в двигателе внутреннего сгорания, в котором осуществляется преобразование химической энергии топлива в теплоту, а затем в механическую работу (в процессе расширения). Развитие процесса сгорания топлива определяется скоростями химических реакций и условиями тепло- и массопереноса горящей смеси. При горении топлива происходят качественные (по составу) и количественные (по объему) изменения. Эти изменения топлива определяют термодинамическое состояние рабочего тела в цилиндре в конце процесса сгорания и, следовательно, влияют на основные показатели двигателя в целом.

Возможность использования альтернативных моторных топлив в двигателях требует всестороннего исследования процессов их сгорания. Объективно оценить эти процессы можно путем экспериментальных исследований и анализа термодинамических параметров рабочего тела на различных стадиях горения.

Цель данной работы – оценка термодинамических характеристик горения альтернативных моторных топлив (на примере водорода) и влияния температурного градиента (Махе-эффекта) на протекание этого процесса. Горению топливно-воздушной смеси в закрытом сосуде присущи особенности, связанные, прежде всего, с непрерывным возрастанием температуры по мере выгорания свежей смеси, что соответственно приводит к повышению давления в результате расширения продуктов сгорания.

Чтобы упростить формулы, раскрывающие закономерности протекания и исследования термодинамических характеристик процесса горения топливно-воздушной смеси в замкнутом объеме (камере сгорания), необходимо учитывать следующие допущения: процесс сгорания является адиабатическим (т. е. отсутствует теплообмен с окружающей средой); смесь сгорает полностью (условная полнота сгорания); отсутствует конвекция; теплоемкости свежей и сгоревшей частей смеси равны.

С учетом принятых допущений можно найти соотношения между давлением и температурой продуктов сгорания в закрытом сосуде, а также оценить разность температур в различных зонах камеры с учетом температурного градиента. Известно, что при горении смеси топлива с окислителем происходит быстрая, самоподдерживающаяся химическая реакция, при этом пламя является концентрированным источником тепловой энергии и химически активных частиц – атомов и радикалов [1]. По мере протекания процесса горения расширяются продукты сгорания, что приводит в результате адиабатного сжатия к увеличению как давления, так и температуры свежей смеси. Рост температуры обусловливает увеличение нормальной (фундаментальной) скорости пламени $u_{\rm H}$ по мере его перемещения от источника воспламенения к стенкам камеры, которая согласно [2] является функцией температуры

$$u_{\rm H} = \sqrt{\frac{2\lambda}{c_p \rho C (T_z - T_0)}} \int_{T_0}^{T_z} F(T) dT, \qquad (1)$$

где λ – коэффициент теплопроводности газа; c_p – удельная теплоемкость при постоянном давлении; ρ – плотность газа; T_0 – начальная температура смеси перед сгоранием; T_z – максимальная температура пламени.

Однако при ламинарном горении в закрытом сосуде возрастание скорости распространения пламени, в отличие от турбулентного горения, компенсируется отрицательным влиянием давления на величину этой скорости. В закрытом сосуде продукты сгорания, расширяясь, поджимают свежую (несгоревшую) часть, температура которой $T_{\rm cB}$ перед сгоранием повышается в зависимости от изменения давления по адиабатическому закону

$$\frac{T_{\rm CB}}{T_0} = \left(\frac{p}{p_0}\right)^{\frac{k-1}{k}},\tag{2}$$

где p – текущее давление смеси; p_0 – начальное давление смеси перед сгоранием; k – показатель адиабаты.

Из (2) следует

$$T_{\rm cb} = T_0 \left(\frac{p_{\rm cb}}{p_0}\right)^{\frac{\gamma-1}{\gamma}}$$

В результате горения и последующего поджатия температура продуктов сгорания в момент времени, соответствующий давлению *p*, равна

$$T = \left(T_{\rm cB} + \frac{a_0 Q}{c_p}\right) \left(\frac{p}{p_{\rm cB}}\right)^{\frac{\gamma - 1}{\gamma}},\tag{3}$$

где a_0 – исходная концентрация горючего вещества; Q – количество теплоты, выделившейся при сгорании.

Подставляя значения входящих в (3) параметров, получим

$$T = T_0 \left[\left(\frac{p_{\rm cB}}{p_0} \right)^{\frac{\gamma-1}{\gamma}} + \frac{p_{\rm max}}{p_0} - 1 \\ \gamma \end{bmatrix} \left(\frac{p}{p_{\rm cB}} \right)^{\frac{\gamma-1}{\gamma}} = T_0 \left[\left(\frac{p}{p_0} \right)^{\frac{\gamma-1}{\gamma}} + \frac{p_{\rm max}}{\gamma} - 1 \\ \gamma \end{bmatrix}^{\frac{\gamma-1}{\gamma}} \left(\frac{p}{p_{\rm cB}} \right)^{\frac{\gamma-1}{\gamma}} \right].$$
(4)

Уравнение [4] показывает, что минимальное значение температуры продуктов сгорания достигается при $p_{cB} = p_{max}$, т. е. у элементов газа, сгоревших последними (в конце камеры сгорания), а максимальное значение – при $p_{cB} = p_0$, у элементов, сгоревших первыми (вблизи источника воспламенения). Таким образом:

$$T_{\min} = T_0 \left(\frac{p_{\max}}{p_0}\right)^{\frac{\gamma-1}{\gamma}} + \left(\frac{\frac{p_{\max}}{p_0} - 1}{\frac{\gamma}{\gamma}}\right);$$
(5)

$$T_{\max} = T_0 \left(\frac{p_{\max}}{p_0}\right)^{\frac{\gamma-1}{\gamma}} \left(1 + \frac{p_{\max}}{p_0} - 1\right).$$
(6)

С учетом перечисленных выше допущений для закрытого сосуда постоянного объема уравнение (2) в конце сгорания можно записать в следующем приближенном виде:

$$\frac{T_{\kappa}}{T_0} = \frac{p_{\max}}{p_0},\tag{7}$$

где T_{κ} – температура в конце сгорания; p_{\max} – давление в конце сгорания. Откуда

$$T_{\kappa} = T_0 \frac{p_{\text{max}}}{p_0}.$$
 (8)

Используя выражение (8), мы определяли температуру продуктов сгорания различных топливно-воздушных смесей стехиометрического состава. Для вычислений были использованы экспериментальные данные, полученные при ламинарном горении этих смесей в модельной камере сгорания (рис. 1), представляющей собой закрытый сосуд цилиндрической формы постоянного объема внутренним диаметром 80 мм и высотой 32 мм. Воспламенение топливно-воздушной смеси производилось свечой зажигания 3, установленной в цилиндрической стенке 1 модельной камеры.

Рис. 1. Общий вид модельной камеры сгорания: 1– цилиндрическая стенка; 2 – торцовая прозрачная стенка; 3 – свеча зажигания; 4 – датчик давления

На рис. 2 показан характер изменения температуры сгорания топливновоздушных смесей в зависимости от значения начального давления в модельной камере сгорания. Анализ полученных данных показывает, что для всех исследованных смесей с увеличением начального давления температура сгорания T_{κ} повышается, при этом в диапазоне малых давлений происходит резкий рост температуры продуктов сгорания, затем, начиная с $p_0 = 0,14$ МПа, дальнейшее повышение температуры становится более пологим. Наибольшую температуру продуктов сгорания имеет водородновоздушная смесь (линия 1), наименьшую – смесь продуктов конверсии с воздухом (линия 5).

Рис. 2. Зависимость температуры продуктов сгорания исследованных топливно-воздушных смесей стехиометрического состава от начального давления в модельной камере сгорания: 1 – водород; 2 – пропан с добавками водорода в объеме 4 %; 3 – то же 2 %; 4 – пропан; 5 – продукты конверсии пропана

Несомненно, что допущение о единой теплоемкости по всей камере приводит к неточности относительно равенства температур продуктов сгорания в любой точке камеры. Дело в том, что непрерывное повышение давления при распространении фронта пламени в замкнутом объеме приводит к так называемому Maxe-эффекту [3–6], суть которого заключается в различиях температур продуктов сгорания по мере распространения фронта пламени, т. е. температура в начале и конце процесса разная. Эти различия температур возникают вследствие того, что продукты сгорания первых элементов смеси, расположенных вблизи инициатора воспламенения (свечи зажигания), подвергаются адиабатическому сжатию в результате повышения давления при сгорании свежей (несгоревшей) смеси. Элементы смеси, сгорающие в последнюю очередь, сначала адиабатно сжимаются, затем сгорают практически при постоянном давлении. Следовательно, работа сжатия в первом случае существенно больше, чем во втором, что приводит к большему повышению температуры сгоревших газов вблизи источника воспламенения по сравнению с элементами, сгоревшими в последнюю очередь. Попытаемся раскрыть влияние этого явления при горении альтернативных моторных топлив и оценить температуру разных частей продуктов сгорания.

В качестве численного примера произведем расчет разности температур горения водородно-воздушной смеси при начальных давлении $p_0 = 0,1$ МПа и температуре $T_0 = 300$ К. Экспериментально установлено [7], что при указанных условиях максимальное значение давления $p_{\text{max}} = 0,707$ МПа, зафиксированное с помощью датчика давления, смонтированного в цилиндрической стенке камеры сгорания напротив свечи зажигания (рис. 1).

Физическая сущность Махе-эффекта раскрывается при рассмотрении энергетического баланса различных элементов (ламин) смеси в процессе сгорания. Условно можно принять, что каждый элемент смеси в момент начала его окисления сгорает изобарно (при постоянном давлении), а затем адиабатически расширяется, сжимая все остальные элементы смеси – как сгоревшие, так и несгоревшие.

Согласно (8) средняя температура продуктов сгорания $T_{cr} = 2121$ К, т. е. прирост температуры составляет

$$\Delta T_{\rm cr} = T_{\rm cr} - T_0 = 1821$$
 K.

Тогда при постоянном давлении повышение температуры $\Delta T'_{\rm cr}$ составит

$$\Delta T_{\rm cr}' = \Delta T_{\rm cr} \left(\frac{c_V}{c_p} \right) = 1446 \, {\rm K},$$

где с_V – удельная теплоемкость смеси при постоянном объеме.

Таким образом, первая ламина (элемент) смеси, расположенная возле свечи зажигания, сгорает при постоянном давлении p_0 . Сразу же после сгорания ее температура составит

$$T'_{cr1} = T_0 + \Delta T'_{cr} = 1746$$
 K.

Далее продукты сгорания адиабатно сжимаются до давления $p_{\text{max}} = 0,707 \text{ MIa}$, а их температура повышается до значения

$$T''_{\rm cr1} = T'_{\rm cr1} \left(\frac{p_{\rm max}}{p_0}\right)^{\frac{k-1}{k}},$$

где *k* – средний показатель адиабаты для продуктов сгорания.

В интервале температур 1650–2500 К показатель адиабаты k = 1,25 [6]. Тогда

$$T''_{\rm cr1} = 1746 \cdot 7,07^{0,2} \approx 2584 \text{ K}$$

В результате адиабатного сжатия последняя ламина водородно-воздушной смеси перед сгоранием имеет температуру

$$T_{cr_n}' = T_0 \left(\frac{p_{\max}}{p_0}\right)^{\frac{k-1}{k}}$$

Учитывая, что в интервале температур 300–500 К показатель адиабаты $k_1 = 1,36$ [6], будем иметь

$$T'_{\rm cr} = 300 \cdot 7,07^{0,2} = 498$$
 K.

Как отмечалось выше, последняя ламина сгорает при постоянном давлении $p_{\rm max}$ и дальнейшему сжатию продукты сгорания не подвергаются. Если принять приближенно, что повышение температуры в процессе сгорания последней ламины остается тем же, что и при сгорании первой ламины при постоянном давлении, т. е. $\Delta T'_{\rm cr} = 1446$ К, то получим температуру продуктов сгорания водорода с воздухом в конце процесса

$$T_{cr_{-}}'' = T_{cr}' + \Delta T_{cr_{-}}' = 1944 \text{ K}.$$

Таким образом, разница в температурах в начале (около свечи зажигания) и в конце процесса сгорания (у противоположной стенки камеры сгорания) водородно-воздушной смеси при заданных начальных условиях составляет

$$\Delta T = T_{\rm cr1}'' - T_{\rm cr_n}'' \approx 640 \text{ K}.$$

Неоднородность температуры различных элементов продуктов сгорания объясняется тем, что элемент, сгоревший в первую очередь, расширяется, отдавая энергию остальной смеси при малом давлении, и воспринимает энергию от других элементов, сгорающих и расширяющихся позднее, при более высоком давлении. Следовательно, элемент, сгорающий первым, получает от остальных элементов больше энергии, чем отдает им, поэтому его температура к концу процесса сгорания будет выше, чем остальных элементов, сгоревших позже.

Конечно, при сгорании топливно-воздушной смеси в цилиндре двигателя внутреннего сгорания температурный градиент и Махе-эффект проявляются слабее, чем в модельной камере сгорания с постоянным объемом вследствие зависимости теплоемкости от температуры, что приводит к снижению максимального давления в конце процесса сгорания. Кроме того, благодаря влиянию теплообмена с окружающей цилиндр средой и перемещению поршня влияние Махе-эффекта оказывается меньше подсчитанных по приведенным формулам. Однако с этим эффектом необходимо считаться.

На рис. 3 показан характер изменения разности температур продуктов сгорания различных элементов, вычисленных по приведенной выше мето-

дике, при горении водородно-воздушной смеси при разных значениях начального давления в камере сгорания. Видно, что температура продуктов сгорания вблизи инициатора воспламенения превышает температуру в конце сгорания примерно на 500–800 К в диапазоне начальных давлений 0,035–1,0 МПа. Последнее обстоятельство имеет практическое значение, заключающееся в том, что при использовании водорода в качестве моторного топлива необходимо заботиться об усиленном охлаждении камеры сгорания в зоне свечи зажигания во избежание ее перегрева.

Рис. 3. Зависимость разности температур ΔT (Махе-эффект) первого и последнего элементарного объемов продуктов сгорания водородно-воздушной смеси стехиометрического состава от начального давления в камере сгорания p_0

выводы

1. С увеличением начального давления в камере сгорания температура горения топливно-воздушной смеси повышается, при этом в диапазоне малых давлений (до 0,14 МПа) характер изменений температуры смеси крутой, затем (свыше 0,14 МПа) наблюдается относительная стабилизация изменения температур. Разница температуры горения для одной и той же смеси при минимальном и максимальном начальном давлениях достигает нескольких сотен градусов. Для водородно-воздушной смеси эта разница составляет примерно 400–450 К.

2. Наибольшую температуру сгорания имеет водородно-воздушная смесь, наименьшую – смесь продуктов конверсии с воздухом во всем диапазоне начальных давлений.

 Высокая температура горения, с одной стороны, и значительная неоднородность температуры продуктов сгорания водородно-воздушной смеси в результате Махе-эффекта, с другой, требуют приемлемого технического решения охлаждения камеры сгорания в случае применения водорода в качестве моторного топлива.

ЛИТЕРАТУРА

1. С о к о л и к, А. С. Самовоспламенение, пламя и детонация в газах / А. С. Соколик. – М.: АН СССР, 1960. – 428 с.

^{2.} З е льдович, Я. Б. Теория теплового распространения пламени / Я. Б. Зельдович, Д. А. Франк-Каменецкий. – М.: Химическая физика. – 1938. – Т. 12, вып. 1. – С. 100–105.

3. В о и н о в, А. Н. Сгорание в быстроходных поршневых двигателях / А. Н. Воинов. – М.: Машиностроение, 1977. – 277 с.

4. Льюис, Б. Горение, пламя и взрывы в газах / Б. Льюис, Г. Эльбе. – М.: Мир. – 1968. – 592 с.

5. И н д и к а т о р н а я диаграмма, динамика тепловыделения и рабочий цикл быстроходного поршневого двигателя / Б. С. Стечкин [и др.]. – М.: АН СССР, 1960. – 200 с.

6. Щ е т и н к о в, Е. С. Физика горения газов / Е. С. Щетинков. – М.: Наука, 1965. – 39 с.

7. C o m b u s t i o n of hydrogen-contained fuels in the model of ice chamber / M. S. Assad [et al.] // International workshop «Nonequilibrium processes in combustion and plasma based technologies». – Minsk, 2006. – P. 124–129.

Представлена кафедрой физико-математических дисциплин

Поступила 5.05.2007

УДК 621.311.22:681.32

ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ИНФОРМАЦИОННОЙ СИСТЕМЫ ДЛЯ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО ОБЪЕМА ОТОБРАЖАЕМОЙ ИНФОРМАЦИИ В АСУ ТП ТЭС

Канд. техн. наук, доц. НАЗАРОВ В. И., инж. ПРОНКЕВИЧ Е. В.

Белорусский национальный технический университет

Управление работой энергоблока условно можно разделить на несколько контуров управления:

- в нормальном режиме;
- в пускоостановочных режимах;
- в аварийном режиме.

Особенность третьего контура управления заключается в том, что здесь управление не может осуществляться по жесткому алгоритму, для него характерно возникновение игровых ситуаций [1]. В контурах управления нормальным и пускоостановочным режимами функции оператора в основном сводятся к контролю за отклонением параметра от их регламентных значений.

Оптимальность управления в том или ином контуре в первую очередь зависит от количества и качества предоставляемой информации. Отклонение объема информации от оптимального увеличивает время оценки ситуации и принятия решений и в конце концов приводит к возрастанию вероятности появления ошибок.

Определить необходимый оператору оптимальный объем информации можно лишь путем построения математической модели информационной системы АСУ ТП энергоблока.

К настоящему времени известен ряд методов определения оптимального объема информации. Например, в [2] для этого принято использовать