СОПРЯЖЕННОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ СИЛОВОЙ СИСТЕМЫ РОЛИК/КОЛЬЦО В УСЛОВИЯХ КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ И ИЗГИБА

Белорусский государственный университет, Минск, Беларусь

В ряде механических систем, называемых в трибофатике силовыми [1], имеет место как поверхностное деформирование и повреждение в локальной области контакта двух элементов системы, так и объемное деформирование и повреждение системы от действующей неконтактной нагрузки.

В работе [2] предложена общая классификация контактных задач применительно к силовым системам машин. В таблице 1 воспроизводится та ее часть, которая относится к контактным задачам для тел вращения. Согласно работе [3], тип контакта В соответствует простейшей механической модели для системы колесо/рельс. Данная модель предназначена для комплексных износоусталостных испытаний на машинах серии СИ [1]. Здесь ролик (элемент 2) имитирует колесо, а кольцо (элемент 1) – рельс. Далее эту модель будем называть системой ролик/кольцо.

Принципиальная особенность системы ролик/кольцо (таблица 1, тип В) по сравнению с соответствующей традиционной контактной задачей (таблица 1, тип А) для системы ролик/ролик состоит в том, в зоне взаимодействия кольца с роликом напряженное состояние обусловлено как полем контактных напряжений, так и полем напряжений вследствие изгиба. Будем называть напряженное состояние в зоне взаимодействия кольца с роликом сопряженным напряженным состоянием для того, чтобы подчеркнуть его особенность.

Элемент 1: $R_{11}>0$ $R_{12}>0$ $R_{12}>0$ $R_{12}>0$ $R_{12}>0$ $R_{12}>0$ $R_{21}>0$ $R_{21}>0$ $R_{22}>0$ $R_{22}>0$ $R_{23}>0$ $R_{23}>0$

Таблица 1 - Схемы подвижного контакта

Основные положения. При исследовании сопряженного напряженного состояния рассматриваемой системы будем исходить из следующих основных положений.

- 1. Приложенная к силовой системе ролик/кольцо нагрузка F_N , вызывает в системе как локальные контактные деформации, так и объемное деформирование (изгиб) кольца они возбуждаются одновременно и в единой области.
- 2. В силу того, что в области контакта взаимодействующие тела (ролик и кольцо) ограничены поверхностями второго порядка, считается применимой теория Герца. Таким образом, в общем случае площадка контакта S(x, y) имеет форму эллипса, а усилия p(x, y) на площадке контакта распределены по эллиптическому закону [4, 5].
- 3. Размеры и площадь эллипса контакта в исследуемой системе дополнительно формируются за счет изменения главной кривизны кольца вследствие его изгиба.

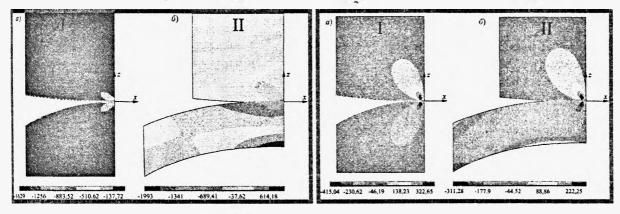
- 4. Связь между напряжениями и деформациями в области контакта линейная.
- 5. Изгибные напряжения в кольце рассчитываются в соответствии с теорией изгиба плоского кривого бруса [6].
- В [2, 7] был предложен сравнительно простой метод описания нагруженности системы ролик/кольцо. В основу метода положена гипотеза о том, что нагрузка F_N может быть разделена на контактную F_c и изгибную F_b составляющие:

$$F_N = F_c + F_b. (1)$$

Способ определения величин F_c и F_b основан на следующем феноменологическом подходе. Под действием внешней сосредоточенной нагрузки F_N , передаваемой от ролика к кольцу, в последнем, вследствие упругого деформирования, возникает внутренний изгибающий момент M_b , который является, по существу, «моментом противодействия» внешней нагрузке со стороны кольца. Условие равновесия, следовательно, будет

$$F_N = F_c + \varphi(M_b), \tag{2}$$

где F_c — нескомпенсированная моментом M_b часть приложенной нагрузки F_N , т. е. ее контактная составляющая, а функция


$$\varphi(M_b) = F_{b_1} \tag{3}$$

представляется как некоторая эквивалентная изгибная (поперечная) нагрузка, которая и обеспечивает условие равновесия (2) или (1).

Соотношение между составляющими F_c и F_b приложенной нагрузки F_N в общем случае зависит от объемной жесткости кольца EI_z/l (E — модуль упругости материала кольца, I_z — момент инерции сечения, l — длина дуги кольца от точки приложения контактной нагрузки до ближайшей опоры) или, с точностью до постоянной k, от соотношения определяющих размеров кольца h/l, где h — толщина кольца. Постоянная k, следовательно, отражает, главным образом, влияние жесткости материала на формирование составляющих F_c и F_b .

а) Распределение напряжений ож

б) Распределение напряжений от

в) Распределение напряжений о

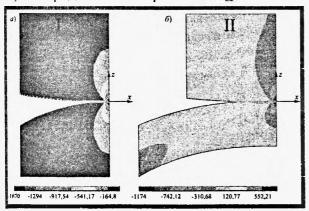


Рисунок 1 — Распределение напряжений при решении плоской задачи:

I – контактная пара,

II – силовая система

Принимается, что разделение составляющих F_c и F_b описывается экспоненциальной функцией

$$F_c = F_N \left(1 - \exp\left(-\frac{h}{lk} \right) \right), \ F_b = F_N \exp\left(-\frac{h}{lk} \right), \tag{4}$$

с сохранением условия (1). Функция (4) считается справедливой в интервале

$$0 \le \frac{h}{lk} \le \infty. \tag{5}$$

Когда $l \to \infty$, то случай h/lk = 0 означает, что кольцо трансформируется в брус бесконечной длины, для которого $F_N = F_b$, а $F_c = 0$. Когда же $l \to 0$, то случай $h/lk = \infty$ означает, что кольцо стягивается в ролик (или полукольцо — в половину ролика), для которого $F_N = F_c$, а $F_b = 0$.

Правомерность гипотезы (1) была подтверждена, в первом приближении, конечно-элементным моделированием и сравнительным анализом пары трения и силовой системы (рисунок 1) [7]. Рассмотрены как двумерная (первоначальный контакт по линии), так и трехмерная (первоначальный контакт в точке) задачи. Для расчета приняты: $F_N = 500\,$ H, раднус ролика $R_{12} = 50\,$ мм, радиус кольца $R_{21} = 15\,$ мм, толщина кольца $h = 2,5\,$ мм. Результаты расчетов приведены на рисунке 1 и в таблицах 2 и 3. Из приведенных данных следует, чодавление в центре площадки контакта (p_0) в силовой системе, вследствие «расхода» части f_K на изгиб кольца, до 30 % меньше, чем в контактной паре.

Полное перемещение (w_1) силовой системы за счет изгиба кольца до 300 % больше, чем в контактной паре; смещение (z_0) точки контакта в силовой системе превышает таковое в паре трения до 7,5 раз. В результате контактное сближение тел в силовой системе $\delta = w_1 - w_2$, w_2 — перемещение нижней перемещение нижней точки кольца, лежащей воси z) до 60 % меньше, чем в контактной паре. Указанные характеристики уменьшаются при переходе от двумерной к трехмерной задаче, вследствие существенного роста жесткости кольца за счет увеличения его ширины.

Таблица 2 – Результаты расчетов для двумерной задачи

таолица 2 – гезультаты расчетов для двумернои задачи				
Параметры	Контактная па- ра	Силовая система (толщина кольца $h = 2,5 \text{ мм}$)	Соотношение параметров для контактной пары и силовой системы, %	
$p_0, H/mm^2$	-1670,3	-1173,6	29,7	
w ₁ , MM	2,417 10-2	9,138 10 ⁻²	-278,1	
W ₂ , MM	0	8,221 10 ⁻²		
$\bar{\delta} = w_1 - w_2$	2,417 10 ⁻²	0,917 10 ⁻²	62,1	
z ₀ , MKM	11,9	83,4	-600,8	

Таблина 3 – Результаты расчетов для трехмерной задачи

Параметры .	Контактная пара	Силовая система (толщина кольца $h = 2,5 \text{ мм}$)	Соотношение параметров для контактной пары и силовой системы, %
p_0 , H/mm ²	-3815,2	-3716,2	2,6
w _i , mm	1,211 10 ⁻²	3,168 10-2	-161,6
w ₂ , MM	0	2,026 10-2	-
$\delta = w_1 - w_2$	1,211 10 ⁻²	1,142 10-2	5,7
<i>z</i> ₀ , MKM	6,1	25,6	-319,7

Таким образом, результаты конечноэлементного расчета демонстрируют существенное влияние изгиба кольца на напряженное состояние в области контакта в результате действия единой, приложенной к системе силы F_N .

Следует, однако, отметить, что проведенный средствами специализированного расчетного пакета конечноэлементный анализ напряженного состояния силовой системы ролик кольцо рядом недостатков [7,8]. Так, погрешность расчета по сравнению с аналитическими данными превыщает 10 %; при необходимости анализа для новых исходных данных всякий

раз задача решается заново и сполна; решение задач динамического изменения напряженнопо состояния сильно затруднено необходимостью выполнения большого объема вычислений.

Общий анализ напряженного состояния. Сопряженное напряженное состояние в любой точке M(x, y, z) силовой системы ролик/кольцо будем определять из общего соотноления [7, 9, 10]

$$\sigma_{ij} = \sigma_{ij}^{(n)} + \sigma_{ij}^{(r)} + \sigma_{ij}^{(b)}, i, j = x, y, z,$$
 (6)

тде $\sigma_{ij}^{(n)}$, $\sigma_{ij}^{(t)}$, $\sigma_{ij}^{(b)}$ — напряжения, вызванные соответственно нормальной контактной, касательной контактной и неконтактной нагрузками.

При исследовании напряженного состояния в зоне контакта в точной постановке обычно ограничиваются нахождением компонент напряжений в точках оси z и в некоторых очках поверхности контакта [4, 5]. Определение всех компонент напряжения в любой точке полупространства в точной постановке затруднительно в силу большой сложности интегрируемых функций.

Напряжения $\sigma_{ij}^{(n)}$ в формуле (6) можно представить в следующем виде:

$$\sigma_{ij}^{(n)} = \begin{cases} \sigma_{ij}^{(hs)} & npu \quad z < 0 \\ \sigma_{ij}^{(surf)} & npu \quad z = 0 \end{cases}$$
 (7)

Расчет напряжений $\sigma_{ij}^{(hs)}$ в любой точке M(x, y, z) при z < 0 полупространства при действии на поверхность нормальных усилий p(x, y) проводится численными методами с использованием решения задачи Буссинеска $\sigma_{ij}^{(B)}$ о действии сосредоточенной нормальной силы на полупространство [7, 8]:

$$\sigma_{ij}^{(hs)}(x,y,z) = \iint\limits_{S(\xi,\eta)} p(\xi,\eta) \sigma_{ij}^{(B)}(\xi-x,\eta-y,z) d\xi d\eta. \tag{8}$$

Необходимо учесть, что в точке приложения единичной нагрузки напряжения $\sigma_{ij}^{(B)}$ не определены. Это приводит к тому, что для точек z=0 поверхности полупространства расчет в соответствии с (8) не сходится.

Для расчета напряжений в любой точке M(x, y, 0) поверхности полупространства при действии нормально распределенных усилий p(x, y) проводится в соответствии со следующей общей формулой [7, 9]:

$$\sigma_{ii}^{(surf)}(x,y,0) = \sigma_{ii}^{(S)}(x,y), \tag{9}$$

где $\sigma_{ij}^{(S)}(x,y)$ — напряжения на поверхности полупространства, вызванные действием давления, распределенного по области S(x,y).

Расчет напряженного состояния $\sigma_{ij}^{(\tau)}$, вызванного действием силы трения, которая моделируется распределением касательных усилий q(x, y), также выполняется численными методами с использованием решения задачи Черрути для действия сосредоточенной касательной силы на полупространство $\sigma_{ij}^{(C)}$ [7, 9]:

$$\sigma_{ij}^{(\tau)}(x,y,z) = \iint_{S(\xi,\eta)} q(\xi,\eta) \sigma_{ij}^{(C)}(\xi-x,\eta-y,z) d\xi d\eta.$$
 (10)

Напряжения от внеконтактных нагрузок будем определять, применяя теорию, подходящую для конкретной геометрии и граничных условий взаимодействующих тел [6, 10]:

$$\sigma_{ij}^{(b)} = \sigma_{ij}^{(M)} + \sigma_{ij}^{(N)} + \sigma_{ij}^{(Q)}, \tag{11}$$

где индексы M, N и Q соответствуют внутренним моменту, продольному и поперечному усилиям.

Сопряженное напряженное состояние, определяемое выражением (6), с учетом (7) (11) описывается моделью Сосновского – Журавкова – Щербакова [7]:

$$\sigma_{ij} = \sigma_{ij}^{(n)} + \sigma_{ij}^{(\tau)} + \sigma_{ij}^{(b)} = \left[\sigma_{ij}^{(hs)} \vee \sigma_{ij}^{(surf)}\right] + \sigma_{ij}^{(\tau)} + \sigma_{ij}^{(b)} =$$

$$= \left[\iint_{S(\xi,\eta)} p(\xi,\eta) \sigma_{ij}^{(B)}(\xi-x,\eta-y,z) d\xi d\eta \vee \sigma_{ij}^{(S)}(x,y)\right] +$$

$$+ \iint_{S(\xi,\eta)} q(\xi,\eta) \sigma_{ij}^{(C)}(\xi-x,\eta-y,z) d\xi d\eta + \sigma_{ij}^{(M)}(x,y,z) + \sigma_{ij}^{(N)}(x,y,z) + \sigma_{ij}^{(Q)}(x,y,z).$$
(12)

Приведем численный пример реализации (12).

Рассмотрим область кольца, непосредственно примыкающую к точке первоначально-

го контакта, при $\varphi = 5\pi / 12$. Зададим локальную систему координат хуг с началом отсчета в точке первоначального контакта ролика и кольца. Ось z направим по внешней нормали, а ось х - по касательной к поверхности кольца в направлении действия силы трения. Ось у направим перпендикулярно плоскости xz. Тогда в силу соотношения $k_{11} + k_{22} > k_{12} + k_{21}$ большая полуось эллипса контакта будет сонаправлена с осью х.

В соответствии с формулой (1) при k = 0,1 и одновременном действии в системе сил $F_c = 953 \; {\rm H} \; {\rm u} \; F_b = 47 \; {\rm H} \; {\rm получим}$ распределения соответствующих напряжений (рисунок 2 и 3). Поскольку величины напряжений $\sigma_{\it xz}^{(b)},\;\sigma_{\it zz}^{(b)}$ в трехмерной области контакта ролика и кольца очень малы, то изменение напряженного состояния в данной области кольца по сравнению с чисто контактным напряженным состоянием происходит в основном за счет напряжений $\sigma_{xx}^{(b)}$ (см. рисунок 2). А величина компоненты тензора напряжений

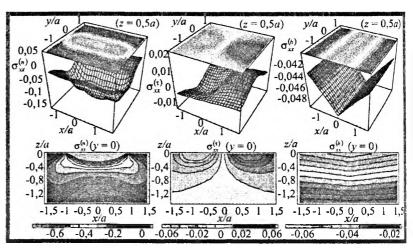


Рисунок 2 — Распределение напряжений $\sigma_{xx}^{(n)}$, $\sigma_{xx}^{(\tau)}$, $\sigma_{xx}^{(\tau)}$, отнесенных к $p_0=3.511\cdot 10^9$ Па, в кольце при $F_b=47$ Н, $a=4.867\cdot 10^{-4}$ м, b/a=0.574

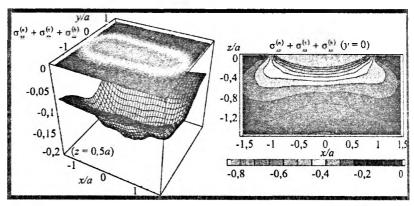


Рисунок 3 — Распределение напряжений $\sigma_{xx}^{(n)}+\sigma_{xx}^{(\tau)}+\sigma_{xx}^{(b)}$, отнесенных к $p_0=3.511\cdot 10^9$ Па, в кольце при F_b = 47 H, $a=4.867\cdot 10^{-4}$ м, b/a=0.574

 $\sigma_{xx} = \sigma_{xx}^{(n)} + \sigma_{xx}^{(\tau)} + \sigma_{xx}^{(b)}$ в кольце в наибольшей степени определяется сжимающими напряжениями $\sigma_{xx}^{(n)}$ (рисунок 3). Однако уже на глубине z = 0,5a заметно влияние напряжений $\sigma_{xx}^{(\tau)}$ разного знака (от контактной нагрузки) и сжимающих $\sigma_{xx}^{(b)}$ напряжений (вследствие изгиба).

Таким образом, установлено отличие сопряженного напряженного состояния системы юлик/кольцо (12) как от контактного напряженного состояния, так и напряженного юстояния, рассчитанного в соответствии с теорией изгиба. Анализ показывает, что это изличие, в зависимости от условий нагружения, может достигать 1,5—2 раз [7]. Это означает, по неучет сопряженного напряженного состояния при проектировании конкретной силовой истемы может привести к неверной оценке ее работоспособности.

ЛИТЕРАТУРА

1. Сосновский Л. А. Основы трибофатики: - Гомель: БелГУТ, 2003. - Т.1. - 246 с.; Т.2. -134 с. 2 Сосновский Л. А., Щербаков С. С. О классификации контактных задач применительно к оповым системам машин / Современные методы проектирования машин. Сборник научных тру-10в. Вып. 2. В 7-ми т. / Под общ. ред. П. А. Витязя. – Мн.: УП "Технопринт", 2004. – Т.4. – С. 48-%. 3 Тюрин С. А. и др. Новые способы испытаний применительно к системе колесо/рельс // Вестшк БелГУТа. – 2004. – С. 54–64. 4 Джонсон К. Механика контактного взаимодействия. – М.: Мир, 1989. – 510 с. 5 Пономарев С. Д. и др. Расчеты на прочность в машиностроении. – М.: Государстжное научно-техническое издательство машиностроительной литературы, 1958. - T.1. - C. 387-#6. 6 Тимошенко С. П., Гудьер Д. Теория упругости. – М.: Наука, 1975. – 576 с. 7 Сосновский Л. А. Механика износоусталостного повреждения: – Гомель: БелГУТ, 2007. – 434 с. 8. Журавков М. А, Захарик А. М., Босяков С.М., Щербаков С.С. Компьютерный анализ напряженноеформированного состояния в зоне эллиптической площадки контакта тел при качении применивльно к модели зубчатых зацеплений.// Трение и износ, 2006. -№1. -С.12-16. 9 Журавков М. А., Щербаков С.С. Исследование опасных объемов при решении контактной задачи для системы «рож/кольцо» / Тр. 5-го Международного симпозиума по трибофатике (ISTF 2005), 3-7 октября 1005 г., Иркутск (Россия) / отв. ред. А. П. Хоменко. – Иркутск: Иркутский государственный униврситет путей сообщения, 2005. -T. 1. - C. 375-390. 10 Сосновский Л. А., Сенько В. И., Щербаков С.С., Залесский Н. А., Исследование напряженного состояния простейшей модели системы колеω/рельс // Вестник БелГУТА, 2005. - № 2. - С. 18-41.

УДК 539.3

Щербаков С. С.

ОПАСНЫЕ ОБЪЕМЫ КАК МЕРЫ ПОВРЕЖДЕННОСТИ

Белорусский государственный университет Минск, Беларусь

Оценка поврежденности силовой системы [1] в общем случае основывается на статистической модели деформируемого твердого тела с опасным объемом [2].

Согласно этой модели при объемном деформировании опасным называется объем V_P , в котором с некоторой вероятностью P возможно появление циклических напряжений σ превышающих нижнюю границу $\sigma_{-1 lim}$ рассеяния пределов выносливости σ_{-1} . Соответственно при контактном реформировании опасным называется объем, в котором с некоторой вероятностью P возможно появление нормальных контактных напряжений, превышающих нижнюю границу P_{fmin} рассеяния пределов выносливости $p_f = p_{0 lim}$, где $p_{0 lim} = \sigma_{zz}^{(max)}$ — давление в центре контакта при предельной контактной нагрузке. Аналогичным образом определяется нижняя граница рассеяния пределов выносливости для касательных напряжений.