Кравчук А.С.¹, Сокоров И.О.¹, Смалюк А.Ф.², Кравчук А.И.² ВЛИЯНИЕ БАЛЛИСТИЧЕСКОГО КОЛЬЦА НА ДОЗВУКОВУЮ АЭРОДИНАМИКУ АВИАЦИОННОЙ БОМБЫ

1. Белорусский национальный технический университет

2. Белорусский государственный университет

Установлено, что баллистическое кольцо служит аэродинамическим тормозом, сокращающим баллистическую траекторию падения авиационной бомбы и, как следствие, уменьшающую рассеивание боеприпасов. С другой стороны, использование этого конструктивного элемента может приводить к возникновению разрежения воздуха в средней и хвостовой частях бомбы. Вследствие данного явления значительно снижается эффективность стабилизатора, расположенного в хвостовой части бомбы. Все перечисленное в совокупности приводит не только к уменьшению устойчивости боеприпаса на баллистической траектории, но и к возможному вращению боеприпаса в вертикальной плоскости при падении.

Введение

Авиационная бомба или авиабомба, один из основных видов авиационных средств поражения [1]. Конструкция авиационной бомбы обычно включает в себя: головную, среднюю и хвостовую части. Головная часть авиационной бомбы выполняется в виде оживала, усеченных корпусов или полусферы. Форма и размеры головной части оказывают существенное влияние на аэродинамику авиабомбы, особенно на величину силы лобового сопротивления, а также на характеристики проникающего и пробивного действия. Средняя часть корпуса бомбы обычно имеет цилиндрическую или коническую форму. Хвостовая часть корпуса имеет, как правило, коническую форму и предназначена для улучшения условий обтекания авиабомбы воздушным потоком и крепления стабилизатора [2].

Одной из основных задач, решаемых при рассмотрении баллистики авиационных бомб, является обеспечение устойчивости ее полета и уменьшение рассеивания при бомбометании. Для решения этих задач обычно применяются два устройства: баллистическое кольцо, и стабилизатор.

Если роль стабилизатора очевидна — с его помощью конструкторы пытаются обеспечить устойчивый полёт авиационной бомбы в воздухе после её отделения от летательного аппарата, то роль баллистического кольца до настоящего времени не была детально исследована. Считается [2], что оно необходимо для дополнительного повышения устойчивости авиационной бомбы на траектории при околозвуковых скоростях полёта. Оно располагается в головной части бомбы.

Отметим, что до настоящего времени не было проведено ни одного теоретического исследования аэродинамики данного вида боеприпаса, а обоснование места установки баллистического кольца и его размеров осуществляются исходя из экспериментально-умозрительных заключений.

Постановка задачи

Рассматривается несколько упрощенная конструкция аналогичная авиационным бомбам ФАБ-3000 M-54, ФАБ-5000 M-54, ФАБ-9000 M-54 [3] (рис. 1, 2). В данном исследовании влиянием стабилизатора будем пренебрегать. Предполагается также, что крепления бомбы также не оказывают существенного влияния на ее аэродинамику. В

этом случае задача для авиационной бомбы, двигающейся с постоянной скоростью в воздушном пространстве без теплопередачи становиться осесимметричной.

Предполагая неподвижность бомбы, задача сводится к исследованию течения описанного вокруг оси симметрии боеприпаса цилиндрического объема воздуха, диаметр основания и длина которого существенно больше диаметра и длины бомбы. Передняя кромка баллистического кольца предполагается перпендикулярной набегающему потоку [4].

Учитывая осесимметричность геометрии модели и специфику решения газодинамических задач средствами ANSYS 10 ED/FLOTRAN [4], в данном случае достаточно рассмотреть плоское радиальное сечение цилиндрического фрагмента воздушной среды, обтекающей плоский недеформируемый профиль радиального сечения авиационной бомбы с баллистическим кольцом.

Рис. 1. ФАБ-3000 М-54 [3]

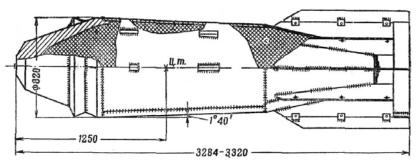


Рис. 2. Общий вид бомбы ФАБ-3000 М-54

Описание параметров модели

В данном исследовании используется следующее наименование параметров модели (рис. 3): L – общая длина боеприпаса без оперения, L1 – длина первого усеченного конуса головной части (м), L2 – общая длина головной части (м), L3 – общая длина головной и средней части, R1 – наименьший радиус первого усеченного конуса головной части, R2 – наибольший радиус первого усеченного конуса боеприпаса, R3 – наибольший радиус средней части боеприпаса, R4 – наименьший радиус средней части боеприпаса, R5 – наименьший радиус хвостовой части боеприпаса.

С учетом того, что баллистическое кольцо в данном исследовании считается перпендикулярным набегающему потоку, имеет некоторую толщину, а его задняя часть выполнена в виде конуса, то для определения его положения на головной части используются следующие параметры (рис. 3): L_RING_1 — расстояние до передней кромки баллистического кольца (м), L_RING_2 — общее расстояние от вершины боеприпаса до задней кромки баллистического кольца (м), L_RING_3 — расстояние до окончания конуса кольца (м), R_RING_1, R_RING_2, R_RING_3 — радиусы баллистического кольца

(м). Кроме того, при решении задачи используются параметры V0 – дозвуковая скорость набегающего потока (700 м/с), Т0 - температура окружающей среды (20 °C).

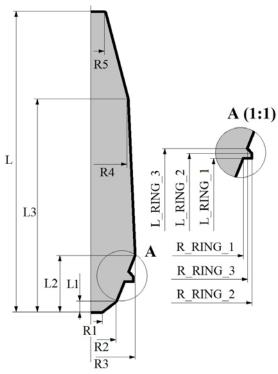


Рис. 3. Геометрические параметры осевого сечения бомбы с баллистическим кольцом (на выноске) без стабилизатора

Построение модели расчетной области

Команды построения геометрии модели поставленной задачи приведены в табл. 1. Команды в строках №1–2 (табл. 1) определяют имя анализа bomb с сохранением имен открытых файлов задачи (файла ошибок, результатов и т.д.), с которыми будет осуществляться обмен с данными, а также обеспечивают вход в препроцессор для подготовки геометрии расчетной области, ее разбиения на конечные элементы и определения краевых условий.

Команды в строках №3–4 (табл. 1) производят выбор двумерного элемента текучей среды FLUID141 с опцией осесимметричности относительно Y-оси.

Команды в строках №5–21 (табл. 1) устанавливают значения используемых параметров.

Команды в строках №22–53 (табл. 1) задают массив координат ключевых точек модели радиального сечения бомбы. Далее команды в строках №54-56 в цикле строят ключевые точки модели на рабочей плоскости, а команды в строках №57-60 строят линии модели на рабочей плоскости.

Команда в строке №61 (табл. 1) создает плоское сечение объема воздуха, обтекающего бомбу.

Команды в строках №62–68 (табл. 1) создают двумя способами создают вспомогательные линии, перпендикулярные оси бомбы.

Команды в строках №69–75 (табл. 1) делят поверхность сечения на области топологически эквивалентные прямоугольнику для построения в дальнейшем упорядоченного разбиения. К сожалению, непосредственное автоматическое построение упорядоченного разбиения данной расчетной области невозможно ввиду несоответствия ее формы четырехугольной.

Команда в строке №76 сжимает нумерацию всех геометрических компонентов модели.

Таблица 1 - Код APDL построения геометрии модели

N Komangias N Komangias 1 /FILNAME, bomb, 0 39 Y(8) = L2 + 2*L 2 /PREP7 40 X(9) = R4 3 ET, 1, FLUID141 41 Y(9) = L3 + 2*L 4 KEYOPT, 1, 3, 1 42 X(10) = RS 5 L1 = 0.1 43 Y(10) = 3*L 6 L2 = 0.7 44 X(11) = 0 7 L3 = 2.1 45 Y(11) = 3*L 8 L = 3. 46 X(12) = 0 9 L_RING_1 = 0.3 47 Y(12) = 5*L 10 L_RING_2 = 0.35 48 X(13) = 10*R3 11 L_RING_2 = 0.35 48 X(13) = 10*R3 11 L_RING_3 = 0.40 49 Y(13) = 5*L 12 R1 = 0.05 50 X(14) = 10*R3 13 R2 = 0.20 51 Y(14) = 0 14 R3 = 0.41 52 X(15) = 0 15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 <td< th=""><th></th><th>-</th><th>_</th><th></th></td<>		-	_	
2 /PREP7 40 X(9) = R4 3 ET, I, FLUIDI4I 41 Y(9) = L3 + 2*L 4 KEYOPT, I, 3, 1 42 X(10) = R5 5 L1 = 0.1 43 Y(10) = 3*L 6 L2 = 0.7 44 X(11) = 0 7 L3 = 2.1 45 Y(11) = 3*L 8 L = 3. 46 X(12) = 0 9 L_RING_1 = 0.3 47 Y(12) = 5*L 10 L_RING_2 = 0.35 48 X(13) = 10*R3 11 L_RING_3 = 0.40 49 Y(13) = 5*L 12 R1 = 0.05 50 X(14) = 10*R3 13 R2 = 0.20 51 Y(14) = 0 14 R3 = 0.41 52 X(15) = 0 15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 54 *DO. i. 1, 15 17 R_RING_1 = R3 - 0.1 55 K, i. X(0), Y(0) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05	N	Команды	N	Команды
3 ET. 1, FLUID141 41 Y(9) = L3 + 2*L 4 KEYOPT, 1, 3, 1 42 X(10) = R5 5 L1 = 0.1 43 Y(10) = 3*L 6 L2 = 0.7 44 X(11) = 0 7 L3 = 2.1 45 Y(11) = 3*L 8 L = 3. 46 X(12) = 0 9 L_RING_1 = 0.3 47 Y(12) = 5*L 10 L_RING_2 = 0.35 48 X(13) = 10*R3 11 L_RING_3 = 0.40 49 Y(13) = 5*L 12 R1 = 0.05 50 X(14) = 10*R3 13 R2 = 0.20 51 Y(14) = 0 14 R3 = 0.41 52 X(15) = 0 15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 54 *BO.i. 1. 15 17 R_RING_1 = R3 - 0.1 55 K.i. X(0), Y(0) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO. i. 1, 14 20 V0 = 700 </td <td></td> <td>/FILNAME, bomb, 0</td> <td>39</td> <td>Y(8) = L2 + 2*L</td>		/FILNAME, bomb, 0	39	Y(8) = L2 + 2*L
4 KEYOPT, 1, 3, 1 42 X(10) = R5 5 L1 = 0.1 43 Y(10) = 3*L 6 L2 = 0.7 44 X(11) = 0 7 L3 = 2.1 45 Y(11) = 3*L 8 L = 3. 46 X(12) = 0 9 L_RING_1 = 0.3 47 Y(12) = 5*L 10 L_RING_2 = 0.35 48 X(13) = 10*R3 11 L_RING_3 = 0.40 49 Y(13) = 5*L 12 R1 = 0.05 50 X(14) = 10*R3 13 R2 = 0.20 51 Y(14) = 0 14 R3 = 0.41 52 X(15) = 0 15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 54 *DO, i, 1, 15 17 R_RING_1 = R3 - 0.1 55 K, i, X(i), Y(i) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20		/PREP7	40	X(9) = R4
5 L1 = 0.1 43 Y(10) = 3*L 6 L2 = 0.7 44 X(11) = 0 7 L3 = 2.1 45 Y(11) = 3*L 8 L = 3. 46 X(12) = 0 9 L_RING_1 = 0.3 47 Y(12) = 5*L 10 L_RING_2 = 0.35 48 X(13) = 10*R3 11 L_RING_3 = 0.40 49 Y(13) = 5*L 12 R1 = 0.05 50 X(14) = 10*R3 13 R2 = 0.20 51 Y(14) = 0 14 R3 = 0.41 52 X(15) = 0 15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 54 *DO, i, 1, 15 17 R_RING_1 = R3 - 0.1 55 K, i, X(i), Y(i) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+ 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15	3	ET, 1, FLUID141	41	Y(9) = L3 + 2*L
6 L2 = 0.7 44 X(11) = 0 7 L3 = 2.1 45 Y(11) = 3*L 8 L = 3. 46 X(12) = 0 9 L_RING_1 = 0.3 47 Y(12) = 5*L 10 L_RING_2 = 0.35 48 X(13) = 10*R3 11 L_RING_3 = 0.40 49 Y(13) = 5*L 12 R1 = 0.05 50 X(14) = 10*R3 13 R2 = 0.20 51 Y(14) = 0 14 R3 = 0.41 52 X(15) = 0 15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 54 *DO, i, 1, 15 17 R_RING_1 = R3 - 0.1 55 K, i, X(i), Y(i) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 1	4	KEYOPT, 1, 3, 1	42	X(10) = R5
7 L3 = 2.1 45 Y(11) = 3*L 8 L = 3. 46 X(12) = 0 9 L_RING_1 = 0.3 47 Y(12) = 5*L 10 L_RING_2 = 0.35 48 X(13) = 10*R3 11 L_RING_3 = 0.40 49 Y(13) = 5*L 12 R1 = 0.05 50 X(14) = 10*R3 13 R2 = 0.20 51 Y(14) = 0 14 R3 = 0.41 52 X(15) = 0 15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 54 *DO, i, 1, 15 17 R_RING_1 = R3 - 0.1 55 K, i, X(i), Y(i) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0	5	L1 = 0.1	43	Y(10) = 3*L
8 L = 3. 46 X(12) = 0 9 L_RING_1 = 0.3 47 Y(12) = 5*L 10 L_RING_2 = 0.35 48 X(13) = 10*R3 11 L_RING_3 = 0.40 49 Y(13) = 5*L 12 R1 = 0.05 50 X(14) = 10*R3 13 R2 = 0.20 51 Y(14) = 0 14 R3 = 0.41 52 X(15) = 0 15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 54 *DO, i, 1, 15 17 R_RING_1 = R3 - 0.1 55 K, i, X(i), Y(i) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25	6	L2 = 0.7	44	X(11) = 0
9 L_RING_1 = 0.3 47 Y(12) = 5*L 10 L_RING_2 = 0.35 48 X(13) = 10*R3 11 L_RING_3 = 0.40 49 Y(13) = 5*L 12 R1 = 0.05 50 X(14) = 10*R3 13 R2 = 0.20 51 Y(14) = 0 14 R3 = 0.41 52 X(15) = 0 15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 54 *DO, i, 1, 15 17 R_RING_1 = R3 - 0.1 55 K, i, X(i), Y(i) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, 0.1	7	L3 = 2.1	45	Y(11) = 3*L
10 L_RING_2 = 0.35 48 X(13) = 10*R3 11 L_RING_3 = 0.40 49 Y(13) = 5*L 12 R1 = 0.05 50 X(14) = 10*R3 13 R2 = 0.20 51 Y(14) = 0 14 R3 = 0.41 52 X(15) = 0 15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 54 *DO, i, 1, 15 17 R_RING_1 = R3 - 0.1 55 K, i, X(i), Y(i) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0	8	L=3.	46	X(12) = 0
11 L_RING_3 = 0.40 49 Y(13) = 5*L 12 R1 = 0.05 50 X(14) = 10*R3 13 R2 = 0.20 51 Y(14) = 0 14 R3 = 0.41 52 X(15) = 0 15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 54 *DO, i, 1, 15 17 R_RING_1 = R3 - 0.1 55 K, ix(i), Y(i) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 2	9	$L_RING_1 = 0.3$	47	Y(12) = 5*L
12 R1 = 0.05 50 X(14) = 10*R3 13 R2 = 0.20 51 Y(14) = 0 14 R3 = 0.41 52 X(15) = 0 15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 54 *DO, i, 1, 15 17 R_RING_1 = R3 - 0.1 55 K, i, X(i), Y(i) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1	10	$L_RING_2 = 0.35$	48	X(13) = 10*R3
13 R2 = 0.20 51 Y(14) = 0 14 R3 = 0.41 52 X(15) = 0 15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 54 *DO, i, 1, 15 17 R_RING_1 = R3 - 0.1 55 K, i, X(i), Y(i) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, 0.1 29 Y(3) = L, 1+2*L 67 *ENDDO <	11	$L_RING_3 = 0.40$	49	Y(13) = 5*L
14 R3 = 0.41 52 X(15) = 0 15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 54 *DO, i, 1, 15 17 R_RING_1 = R3 - 0.1 55 K, i, X(i), Y(i) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, , 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0	12	R1 = 0.05	50	X(14) = 10*R3
15 R4 = 0.4 53 Y(15) = 0 16 R5 = 0.2 54 *DO, i, 1, 15 17 R_RING_1 = R3 - 0.1 55 K, i, X(i), Y(i) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, , 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL,	13	R2 = 0.20	51	Y(14) = 0
16 R5 = 0.2 54 *DO, i, 1, 15 17 R_RING_1 = R3 - 0.1 55 K, i, X(i), Y(i) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, , 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L+2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, DELETE, DELETE 32 X(5) = R_RING_2 70 </td <td>14</td> <td>R3 = 0.41</td> <td>52</td> <td>X(15) = 0</td>	14	R3 = 0.41	52	X(15) = 0
17 R_RING_1 = R3 - 0.1 55 K, i, X(i), Y(i) 18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, , 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 3, 18, DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, DELETE, DELETE 34 X(6) = R_RING	15	R4 = 0.4	53	Y(15) = 0
18 R_RING_2 = R3 56 *ENDDO 19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, , 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, , DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, , DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 +	16	R5 = 0.2	54	*DO, i, 1, 15
19 R_RING_3 = R3 - 0.05 57 *DO, i, 1, 14 20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, , 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, , DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, , DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, , DELETE, DELETE	17	$R_RING_1 = R3 - 0.1$	55	K, i, X(i), Y(i)
20 V0 = 700 58 LSTR, i, i+1 21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, , 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, DELETE, DELETE 33 Y(5) = L_RING_1 + 2*L 71 ASBL, 4, 19, DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, DELETE, DELETE	18	$R_RING_2 = R3$	56	*ENDDO
21 T0 = 20 59 *ENDDO 22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, , 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, DELETE, DELETE 33 Y(5) = L_RING_1 + 2*L 71 ASBL, 4, 19, DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO	19	$R_RING_3 = R3 - 0.05$	57	*DO, i, 1, 14
22 *DIM, X, ARRAY, 15 60 LSTR, 15, 1 23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, , 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, DELETE, DELETE 33 Y(5) = L_RING_1 + 2*L 71 ASBL, 4, 19, DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, DELETE, DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28	20	V0 = 700	58	LSTR, i, i+1
23 *DIM, Y, ARRAY, 15 61 AL, ALL 24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, , 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, , DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, , DELETE, DELETE 33 Y(5) = L_RING_1 + 2*L 71 ASBL, 4, 19, , DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, , DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28, , DELETE, DELETE	21	T0 = 20	59	*ENDDO
24 X(1) = 0 62 LEXTND, 1, 2, 11*R3, 0 25 Y(1) = 2*L 63 LANG, 13, 3, 90, , 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, DELETE, DELETE 33 Y(5) = L_RING_1 + 2*L 71 ASBL, 4, 19, DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28, DELETE, DELETE	22	*DIM, X, ARRAY, 15	60	LSTR, 15, 1
25 Y(1) = 2*L 63 LANG, 13, 3, 90, , 0.1 26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, , DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, DELETE, DELETE 33 Y(5) = L_RING_1 + 2*L 71 ASBL, 4, 19, , DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, , DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28, , DELETE, DELETE	23	*DIM, Y, ARRAY, 15	61	AL, ALL
26 X(2) = R1 64 LEXTND, 4, 5, 11*R3, 0 27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, DELETE, DELETE 33 Y(5) = L_RING_1 + 2*L 71 ASBL, 4, 19, DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, DELETE, DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28, DELETE, DELETE	24	X(1) = 0	62	LEXTND, 1, 2, 11*R3, 0
27 Y(2) = 2*L 65 *DO, i, 6, 9 28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, , DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, , DELETE, DELETE 33 Y(5) = L_RING_1 + 2*L 71 ASBL, 4, 19, , DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, , DELETE, DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28, , DELETE, DELETE	25	Y(1) = 2*L	63	LANG, 13, 3, 90, , 0.1
28 X(3) = R2 66 LANG, 13, i, 90, , 0.1 29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, DELETE, DELETE 33 Y(5) = L_RING_1 + 2*L 71 ASBL, 4, 19, DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, DELETE, DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28, DELETE, DELETE	26	X(2) = R1	64	LEXTND, 4, 5, 11*R3, 0
29 Y(3) = L1 + 2*L 67 *ENDDO 31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, DELETE, DELETE 33 Y(5) = L_RING_1 + 2*L 71 ASBL, 4, 19, DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, DELETE, DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28, DELETE, DELETE	27	Y(2) = 2*L	65	*DO, i, 6, 9
31 X(4) = R_RING_1 68 LEXTND, 10, 10, 11*R3, 0 31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, DELETE, DELETE 33 Y(5) = L_RING_1 + 2*L 71 ASBL, 4, 19, DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28, DELETE, DELETE	28	X(3) = R2	66	LANG, 13, i, 90, , 0.1
31 Y(4) = L_RING_1 + 2*L 69 ASBL, 1, 16, , DELETE, DELETE 32 X(5) = R_RING_2 70 ASBL, 3, 18, , DELETE, DELETE 33 Y(5) = L_RING_1 + 2*L 71 ASBL, 4, 19, , DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, , DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28, , DELETE, DELETE	29	Y(3) = L1 + 2*L	67	*ENDDO
32 X(5) = R_RING_2 70 ASBL, 3, 18, DELETE, DELETE 33 Y(5) = L_RING_1 + 2*L 71 ASBL, 4, 19, DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, DELETE, DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28, DELETE, DELETE	31	$X(4) = R_RING_1$	68	LEXTND, 10, 10, 11*R3, 0
33 Y(5) = L_RING_1 + 2*L 71 ASBL, 4, 19, , DELETE, DELETE 34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, , DELETE, DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28, , DELETE, DELETE	31	$Y(4) = L_RING_1 + 2*L$	69	ASBL, 1, 16, , DELETE, DELETE
34 X(6) = R_RING_2 72 *DO, i, 1, 4 35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, , DELETE, DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28, , DELETE, DELETE	32	$X(5) = R_RING_2$	70	ASBL, 3, 18, , DELETE, DELETE
35 Y(6) = L_RING_2 + 2*L 73 ASBL, 4+i, 19+2*i, , DELETE, DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28, , DELETE, DELETE	33	$Y(5) = L_RING_1 + 2*L$	71	ASBL, 4, 19, , DELETE, DELETE
35 Y(6) = L_RING_2 + 2*L 73 DELETE 36 X(7) = R_RING_3 74 *ENDDO 37 Y(7) = L_RING_3 + 2*L 75 ASBL, 9, 28, , DELETE, DELETE	34	$X(6) = R_RING_2$	72	*DO, i, 1, 4
37 $Y(7) = L_RING_3 + 2*L$ 75 ASBL, 9, 28, , DELETE, DELETE	35	$Y(6) = L_RING_2 + 2*L$	73	
	36	$X(7) = R_RING_3$	74	*ENDDO
X(8) = R3 76 NUMCMP, ALL	37	$Y(7) = L_RING_3 + 2*L$	75	ASBL, 9, 28, , DELETE, DELETE
<u> </u>	38	X(8) = R3	76	NUMCMP, ALL

Построение упорядоченного разбиения модели. Необходимость построения упорядоченного конечноэлементного разбиения модели диктуется требованием получить качественное решение поставленной задачи, а также ограничениями на количество используемых элементов в ANSYS 10 ED.

Команды в строках №1–6 (табл. 2) назначают размеры элементов на границах модели. Команды в строках №7–13 (табл. 2) производят упорядоченное разбиение модели последовательно по вспомогательным областям и использованием двух видов команд.

Таблица 2 - Команды подготовки и построения упорядоченного разбиения модели

N	Команды	N	Команды
1	*DO, i, 1, 10	8	AMAP, 1, 2, 3, 17, 23
2	LESIZE, i, L/40	9	AMAP, 2, 1, 23, 14, 15
3	*ENDDO	10	MSHMID, 0
4	LESIZE, 11, L/20	11	MSHKEY, 1
5	LESIZE, 14, L/20	12	AMESH, 4, 8, 1
6	LESIZE, 15, L/20	13	AMAP, 9, 11, 12, 13, 18
7	AMAP, 3, 3, 4, 16, 17	14	

Задание краевых условий. Команды в строках №1–8 (табл. 3) устанавливают краевые условия задачи обтекания профиля радиального сечения авиабомбы: скорость набегающего потока (стр. №1–2, табл. 3), выбор линий профиля боеприпаса и условия прилипания на его границе (стр. №3–6, табл. 3), условия осесимметричности задачи (стр. №7–8, табл. 3).

Условия отсутствия избыточного давления на фронтальной и боковой границах воздушной среды определяется командами в строках №9–17 (табл. 3).

Таблица 3 – Команды задания краевых условий

N	Команды	N	Команды
1	DL, 13, , VX, 0, 1	10	DL, 13, , PRES, 0, 1
2	DL, 13, , VY, V0, 1	11	DL, 16, , PRES, 0, 1
3	LSEL, S, LINE, , 1, 10	12	*DO, i, 19, 25, 2
4	DL, ALL, , VX, 0, 1	13	DL, i, , PRES, 0, 1
5	DL, ALL, , VY, 0, 1	14	*ENDDO
6	ALLSEL, ALL	15	*DO, i, 28, 31
7	DL, 11, , VX, 0, 1	16	DL, i, , PRES, 0, 1
8	DL, 14, , VX, 0, 1	17	*ENDDO
9	DL, 12, , PRES, 0, 1	18	

Определение параметров среды и решение задачи. Предполагается, что профиль радиального сечения бомбы обтекается воздухом без теплообмена, с известными значениями скорости, давления, плотности и температуры набегающего потока. Таким образом, течение газовой среды является стационарным, адиабатическим и, с учетом геометрии профиля боеприпаса, турбулентным. Команды указания параметров воздушной среды, а также параметров решения поставленной задачи приведены в табл. 4.

Команды в строках $N_{2}1-8$ (табл. 4) указывают стандартные свойства воздуха с варьирующимися значениями плотности, динамической вязкости, теплопроводности и удельной теплоемкости.

Команда в строке №9 (табл. 4) задает температуру торможения газовой среды по формуле Бернулли.

Команды в строках №10–16 (табл. 4) определяют модель течения (турбулентное адиабатическое движение сжимаемой текучей среды – команды в строках №10–13, табл. 4), производят выбор параметров решателя (модель турбулентности, алгоритм решения и количество итераций – команды в строках №13–16, табл. 4)

Количество итераций выбрано небольшим, т.к. это связано с тем, что более плотное разбиение в ED версии ANSYS создать невозможно. Однако относительная погрешность решения поставленной задачи даже при этом числе итераций составляет вполне удовлетворительные 5 %.

Команды в строках №17–19 (табл. 4), задают величины относительных параметров для обеспечения сходимости решения поставленной задачи.

Команды в строках №20–21 (табл. 4) обеспечивают переход из препроцессора в решающую среду, запуск решения и завершение сессии.

Таблица 4 – Команды определения параметров среды и решения задачи

N	Команды	N	Команды
1	FLDATA7, PROT, DENS, AIR-SI	12	FLDATA1, SOLU, TURB, 1
2	FLDATA13, VARY, DENS, T	13	FLDATA1, SOLU, COMP, 1
3	FLDATA7, PROT, VISC, AIR-SI	14	FLDATA24, TURB, MODL, 3
4	FLDATA13, VARY, VISC, T	15	FLDATA37, ALGR, SEGR, SIMPLEN
5	FLDATA7,PROT,COND,AIR-SI	16	FLDATA2, ITER, EXEC, 35
6	FLDATA13, VARY, COND, T	17	FLDATA34, MIR, MOME, 0.99
7	FLDATA7, PROT, SPHT, AIR-SI	18	FLDATA34, MIR, TURB, 0.99
8	FLDATA13, VARY, SPHT, T	19	FLDATA34, MIR, TEMP, 0.99
9	FLDATA14, TEMP, TTOT, 273+T0+V0*V0/2008	20	/SOL
10	FLDATA1, SOLU, TRAN, 0	21	SOLVE
11	FLDATA1, SOLU, TEMP, 0	22	

Отображение результатов решения

Поскольку задача установившегося движения воздуха решается итерационно, для получения доступа к результатам анализа необходимо прочитать последние по времени данные решения с помощью последовательности двух команд /POST1 и SET, LAST.

Для отображения модели в осесимметричном виде перед отображением результатов необходимо воспользоваться командой /EXPAND, 18, AXIS, HALF, ,10. После этого можно отобразить, например, распределение давлений около авиабомбы с баллистическим кольцом командой PLNSOL, PRES (рис. 4).

Выводы

Баллистическое кольцо служит мощным аэродинамическим тормозом, сокращающим баллистическую траекторию падения авиационной бомбы и, как следствие, уменьшающую рассеивание боеприпасов. С другой стороны, использование этого конструктивного элемента приводит к возникновению разрежения (падению давления) среды в средней и хвостовой частях бомбы. Вследствие данного явления значительно снижается эффективность работы стабилизатора, расположенного в хвостовой части бомбы. Все перечисленное в совокупности приводит не только к уменьшению устойчивости боеприпаса на баллистической траектории, но и вращению боеприпаса в вертикальной плоскости при падении.

Установлено, что при использовании баллистического кольца невозможно гарантировать то, что бомба коснется земли головной частью. Соответственно на многих отечественных боеприпасах данного типа устанавливают взрыватели не только в головной и хвостовой частях бомбы, но и даже в средней части на боковой поверхности боеприпаса [2]. Кроме того, касание земли средней или хвостовой частями резко снижает разрушительное ударное воздействие на объект, что имеет большое значение для бетонобойных боеприпасов.

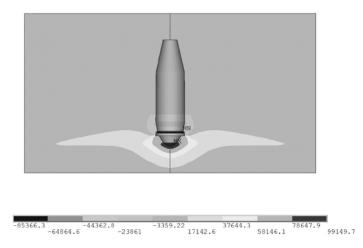


Рис. 4. Распределение давлений около бомбы с баллистическим кольцом в головной части

ЛИТЕРАТУРА

- 1. Авиационная бомба / Википедия свободная энциклопедия [Электронный документ] URL: https://ru.wikipedia.org/wiki/Авиационная бомба (Дата доступа: 01.06.2019).
- 2. Принцип устройства авиационных бомб / Студопедия [Электронный документ] URL: https://studopedia.su/6_44014_printsip-ustroystva-aviatsionnih-bomb.html (Дата доступа: 01.06.2019).
- 3. 1954 Авиационная бомба ФАБ-3000 М-54 / Виртуальная прогулка по транспортному музею: Музей Дальней Авиации в г. Рязань [Электронный документ] URL: https://360carmuseum.com/ru/museum/58/exhibit/3177 (Дата доступа: 01.06.2019).
- 4. Кравчук, А. С. Параметрическая модель обтекания осколочно-фугасного снаряда потоком воздуха / А. С. Кравчук, А. И. Кравчук, И. А. Тарасюк / Перспективы науки, 2018, № 7 (106). -44–51 С.