МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет

Кафедра «Промышленная теплоэнергетика и теплотехника»

Ю. П. Ярмольчик М. А. Ярмольчик

СИСТЕМЫ ГАЗОСНАБЖЕНИЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

Пособие для студентов специальности 1-41 01 05 «Промышленная теплоэнергетика и теплотехника»

Рекомендовано учебно-методическим объединением по образованию в области энергетики и энергетического оборудования

Минск БНТУ 2020 УДК 658.26:662.76:378.147.091.313я(075.8) ББК 38.763я7 Я75

Авторы: Ю. П. Ярмольчик, М. А. Ярмольчик

Репензенты:

канд. техн. наук, главный научный сотрудник РУП «»БелТЭИ» Φ . И. Молочко; канд. техн. наук, доцент, зав. кафедрой «Энергетика» БГАТУ В. А. Коротинский

Ярмольчик, Ю. П.

Я75 Системы газоснабжения промышленных предприятий: пособие для студентов специальности 1-41 01 05 «Промышленная теплоэнергетика и теплотехника» / Ю. П. Ярмольчик, М. А. Ярмольчик. – Минск: БНТУ, 2020. – 80 с.

ISBN 978-985-583-520-3.

Пособие предназначено для оказания помощи студентам при выполнении курсовой работы. В нем излагаются основные положения основ систем газоснабжения промышленных предприятий, приводятся варианты заданий курсовой работы. К каждому разделу курса разработаны указания, способствующие более глубокому изучению и усвоению материала.

Материал методической части подобран и изложен таким образом, чтобы сосредоточить внимание студентов на основных, наиболее важных вопросах по курсу «Системы газоснабжения промышленных предприятий».

УДК 658.26:662.76:378.147.091.313я(075.8) ББК 38.763я7

ISBN 978-985-583-520-3

© Ярмольчик Ю. П., Ярмольчик М. А., 2020 © Белорусский национальный технический университет, 2020

ОГЛАВЛЕНИЕ

Предисловие	4
Общие указания	
Указания к разделам курса	
Задание к курсовой работе	
1. Построение годового графика потребления газа	
и определение его расчетных расходов	14
2. Выбор общей схемы подачи газа заданным	
потребителям и составление расчетной схемы	19
3. Гидравлический расчет межцехового газопровода	
низкого давления	21
4. Гидравлический расчет газопровода среднего	
давления (от ввода до ГРП)	34
5. Выбор фильтров, счетчиков газа и определение	
давления газа P_1 перед регулятором давления (РД)	38
6. Выбор регулятора давления (РД)	
для газорегуляторного пункта (ГРП)	50
7. Определение наименьшего требуемого	
давления газа на вводе $P_{\text{H, min}}$	59
Задание на графическую часть курсовой работы	
Дополнительное задание к курсовой работе	
1. Определение требуемой максимальной мощности	
горелки	65
2. Выбор типоразмера горелки	
3. Определение длины пламенной (горелочной)	
трубы горелки	70
4. Выбор оптимального типоразмера обвязочного	
газопровода (газового блока) горелки	72
5. Определение мощности нижней ступени горелки	
Библиографический список	

ПРЕДИСЛОВИЕ

Дисциплина «Системы газоснабжения промышленных предприятий» занимает важное место в подготовке инженера-энергетика по специальности «1-41 01 05 «Промышленная теплоэнергетика и теплотехника».

Мировоззренческие аспекты дисциплины раскрываются путем освещения роли систем газоснабжения в решении народнохозяйственных задач, показа достижений отечественной и зарубежной науки и техники в решении задач газоснабжения промпредприятий.

Цель дисциплины – формирование системы знаний для проектирования и эксплуатации систем газоснабжения, необходимых промышленному предприятию.

Задачи изучения дисциплины состоят в приобретении системных знаний, включающих:

- характеристику промышленных технологических и энергетических потребителей газообразного топлива, а так же их требования к параметрам и качеству используемого газа;
- технологические схемы, состав основного и вспомогательного оборудования, характерные режимы работы и технико-экономические показатели промышленных энергетических станций, осуществляющих централизованную генерацию, трансформацию и распределение используемых на предприятии газообразных топлив;
- методы и способы регулирования и балансирования потребления и производства газа;
- схемы, конструкции и режимы работ внутризаводских систем транспортировки и распределения газа.

Задачи дисциплины состоят в выработке умений и навыков у студентов по:

- определению и корректировке потребности предприятия в горючих газах для технологических и энергетических потребителей;
- выполнению расчетов технологических схем газоснабжения (оборудования и трубопроводов) с использованием современных математических методов, в том числе и на ЭВМ;
- определению затрат энергетических, материальных и людских ресурсов в системах газоснабжения предприятия и выработке путей сокращения этих затрат;

осуществлению надежной и экономичной эксплуатации основного и вспомогательного оборудования в системах газоснабжения.

При изложении материала дисциплины используются знания и умения, полученные студентами в дисциплинах: «Топливо и процессы горения в теплотехнологических установках», «Техническая термодинамика», «Тепломассообмен», «Нагнетатели и тепловые двигатели», «Промышленные тепломассообменные процессы и установки», «Высокотемпературные теплотехнические процессы и установки», «Экономика производства».

ОБЩИЕ УКАЗАНИЯ

Процесс обучения студентов по данному курсу включает: получение информации на лекциях, самостоятельную работу с учебниками и учебно-методическими пособиями, выполнение контрольных и лабораторных работ, приобретение навыков решения конкретных задач на практических занятиях, получение консультаций на кафедре «Промышленная теплоэнергетика и теплотехника» по вопросам, возникающим при изучении материала. Для более глубокого усвоения и закрепления материала предлагается ответить на вопросы для самопроверки, которые приводятся в настоящем методическом пособии к каждому разделу курса.

При выполнении курсовой работы необходимо соблюдать следующие требования. Вначале должны быть четко выписаны исходные параметры, заданные по условию, и определена конечная цель задания. Все вычисления проводить, пользуясь Международной системой единиц (СИ). Все вычисления приводить в развернутом виде. При использовании табличных значений величин (теплофизических характеристик, вспомогательных функций и коэффициентов), уравнений подобия, графических зависимостей, необходимо давать ссылки на источники, которые используются. Решения каждого пункта задания сопровождать кратким пояснительным текстом. Указывать, какая из величин определяется расчетным путем, либо выбирается из справочников, учебных и учебно-вспомогательных пособий и т. д.

Курсовая работа включает расчетно-пояснительную записку общим объемом 20–25 страниц рукописного текста и графическую часть, которая выполняется на ватмане в стандартных масштабах.

Задания к курсовой работе представлены вариантами, соответствующими номеру студента в журнале или ведомости.

УКАЗАНИЯ К РАЗДЕЛАМ КУРСА

Введение

Изучению курса «Системы газоснабжения промышленных предприятий» должна предшествовать глубокая проработка современного состояния энергетики в Республике Беларусь, пути совершенствования теплотехнического оборудования, теплоэнергетических технологий и энергетических схем промышленных предприятий. Важным фактором в дальнейшем развитии энергетической отрасли в Республике Беларусь является все углубляющаяся интеграция с Российской Федерацией, странами ЕАС, а также с другими странами в рамках все более открытого сотрудничества по обмену опытом, новыми технологиями и конструктивными идеями в области систем производства и распределения энергоносителей. Интеграция с Россией и Казахстаном приводит теплоэнергетику Республики Беларусь с одной стороны к унификации теплотехнического оборудования, а с другой - к интенсивному принятию и внедрению новейших теплотехнических технологий, наиболее адаптированных к условиям Беларуси, важнейшим фактором являются также эффективные системы газоснабжения промышленных предприятий.

Специалистам энергетических служб промышленных предприятий, задачей которых является квалифицированное использование энергоресурсов, прежде всего необходимо знать наиболее эффективные пути получения, транспорта и распределения топливных ресурсов, и прежде всего, газообразного топлива, занимающего основное место в топливном балансе Республики Беларусь.

Тема 1. Введение. Направления, масштабы и перспективы использования газообразного топлива.

Назначение и основное содержание курса, связь его со смежными дисциплинами. Современные масштабы, перспективы производства и потребления горючих газов промышленными предприятиями.

Приводятся аргументы привлекательности разных видов топлива для теплотехнологий, современное состояние и перспективы использования разных видов топлива на промышленных предприятиях Республики Беларусь. Рассматривается связь изучаемой дисци-

плины с ранее изученными: «Топливо и процессы горения в теплотехнологических установках», «Техническая термодинамика», «Тепломассообмен», «Гидро-газодинамика», «Нагнетатели и тепловые двигатели», «Промышленные тепломассообменные процессы и установки», «Высокотемпературные теплотехнические процессы и установки», «Экономика производства».

Рассматривается история и современная структура потребления разных видов топлива промышленными предприятиями Республики Беларусь, программы развития потребления топливно-энергетических ресурсов промышленными предприятиями. Приводятся сведения о перспективах производства искусственных горючих газов, масштабы современной и перспективной их добычи и производства в Республике Беларусь.

Тема 2. Классификация газообразных топлив, используемых в промышленности в качестве технологического сырья и энергоносителя.

Естественные (природные и попутные) и искусственные (сухой перегонки, газификации и сжиженные) горючие газы. Состав и характеристики природных и искусственных газов.

Изучаются химический состав и физические свойства горючих газов. Подробно изучаются топливные характеристики: низшая и высшая теплота сгорания, плотность (абсолютная и относительная), влагосодержание и влияние влаги на теплоту сгорания и температуру горения, содержание сернистых соединений и азота.

Тема 3. Производство и транспорт природного газа.

3.1. Категории газоносных горизонтов. Промысловый газопровод. Газовая скважина.

Подробно рассматриваются экономические и технологические аспекты современной добычи и перспектив добычи природного газа в зависимости от категории газоносного горизонта, приводятся сведения о существующих и разрабатываемых месторождениях природного газа в России и в Республике Беларусь. Рассматриваются традиционные и современные технологии добычи природного газа, способы устройства скважин, скважинных коллекторов и других структурных элементов промыслового газопровода.

3.2. Магистральный газопровод. Схемы, назначение и устройство газораспределительной станции (ГРС).

Рассматривается устройство магистрального газопровода непосредственно от мест добычи до основных потребителей природного газа, его элементы, включая газодутьевые станции, фильтрацию от пыли и влаги. Подробно разбирается общая и специфические схемы, назначение и устройство газораспределительных станций.

Тема 4. Распределение природного газа на промышленном предприятии.

4.1. Надежность газоснабжения.

Рассматриваются требования, предъявляемые надзорными организациями к надежности газопроводов в зависимости от назначения, типов и видов промышленного производства, требуемых показателей горючего газа (расходов и давления). Подробно изучаются категории надежности газопроводов.

4.2. Классификация заводских газопроводов. Схема тупикового разветвленного газопровода с центральным газорегуляторным пунктом (ГРП).

Рассматривается классификация и схемы прокладки заводских газопроводов в зависимости от категорий потребителей, требований к надежности, параметрам горючих газов. Подробно рассматривается наиболее распространенная схема тупикового разветвленного газопровода с центральным газорегуляторным пунктом.

4.3. Газорегуляторным пункты. Схема ГРП с несколькими регулирующими нитками.

Рассматриваются схемы газорегуляторным пунктов с одной, двумя и более регулирующими ветками. Их назначение, устройство, структурные элементы, включая регуляторы давления, расходомеры, манометры, термометры, фильтры тонкой очистки от пыли, влагоотделители, запорная арматура, предохранительные сбросные и запорные клапаны.

4.4. Обвязочный газопровод. Элементы обвязочного газопровода.

Подробно разбираются схемы обвязочных газопроводов в зависимости от мощности отдельных потребителей, типа газогорелочных устройств. Изучаются отдельные элементы обвязочного газопровода: компенсаторы, шаровые краны, запорные и регулирующие клапаны, в том числе в блочном исполнении, измерительные при-

боры, автоматика, реле и датчики безопасности. Особое внимание отводится изучению актуальности применения и принципу действия приборов контроля герметичности газовых клапанов. Приводятся примеры рабочих графиков определения типоразмеров блоков газовых клапанов в зависимости от требуемой мощности.

Тема 5. Газогорелочные устройства.

5.1. Классификация газовых горелок.

Приводятся принципы классификации газовых горелок в зависимости от: способов подачи воздуха на горение, конструктивного исполнения, видов горючих газов, методов регулирования мощности.

5.2. Проектирование газовых горелок.

Рассматриваются аспекты, влияющие на правильный выбор газовых горелок в зависимости от мощности, технических характеристик и конструктивных особенностей пламенных теплогенераторов, в которых они используются. Приводятся примеры графиков рабочих зон горелок в зависимости от аэродинамического сопротивления топок пламенных теплогенераторов.

5.3. Конструкция, узлы и комплектующие газовых горелок.

Приводятся конструкции атмосферных и дутьевых горелок, структура и функциональные связи отдельных узлов, конструкционные особенности, физические принципы действия и технические характеристики комплектующих. Особое внимание уделяется деталям, обеспечивающим безопасную эксплуатацию газовых горелок. Приводятся примеры рабочих графиков определения типоразмеров блоков газовых клапанов в зависимости от требуемой мощности горелок, динамического давления подводимого газа и аэродинамического сопротивления топок пламенных теплогенераторов.

Тема 6. Газовые смесительные (ГСС) и смесительно-повысительные станции (ГСПС).

6.1. Газовые смесительные станции.

Приводятся сведения об экономической целесообразности использования низкокалорийных искусственных горючих газов, пути повышения их теплоты сгорания путем смешения с более калорийными газами. Рассматриваются принципиальные схемы смесительных станций и получение бинарных газов.

6.2. Газовые смесительно-повысительные станции.

Указывается область необходимости снабжения смесительных станций дополнительными компрессорами с целью повышения давления бинарных газов у потребителей. Подробно разбирается структурная и технологическая схемы ГСПС.

Тема 7. Расчет заводского газопровода.

7.1. Общие принципы и порядок расчета разветвленных газопроводов. Определение потерь давления в газопроводах.

Рассматриваются общие принципы и порядок расчета разветвленных межцеховых газопроводов промышленного предприятия; способы определения потерь давления на местные сопротивления и по длине газопровода в зависимости от диаметров отдельных участков газопроводов, размеров и типов арматуры, фильтров, конденсатоотводчиков, поворотов и т. п. Приводится пример расчета потерь давления в типовом межцеховом заводском газопроводе с пятью отдельно стоящими цехами с различной нагрузкой.

7.2. Гидравлический расчет газовых сетей (кольцевых и тупиковых) с сосредоточенными отборами.

Приводится общая структура, принципы и порядок гидравлических расчетов газовых сетей в зависимости от схемы газопровода, в том числе кольцевых и тупиковых разветвленных, с сосредоточенными отборами в цехах промышленного предприятия.

Тема 8. Техника безопасности и охрана труда при эксплуатации и ремонтных работах газового хозяйства промышленных предприятий.

8.1. Токсичность горючих газов. Предельно-допустимые концентрации (ПДК) токсичных газов.

Приводятся табличные сведения о токсичности горючих газов и их составляющих, физические свойства, физиологическое воздействие на человека, методики первой помощи при отравлениях. Приводятся виды предельно-допустимых концентраций токсичных горючих газов, типы их лимитирующих показателей.

8.2. Взрываемость горючих газов. Утечка горючих газов. Испытание газовых сетей на прочность и герметичность.

Рассматриваются физические факторы и области взрываемости горючих газов, методы их определения, факторы сужения и расши-

рения диапазонов взрываемости. Приводятся наиболее характерные причины утечек горючих газов. Подробно разбираются методики и порядок испытания газопроводов на прочность и герметичность.

8.3. Классификация газоопасных и взрывоопасных помещений. Охрана труда.

Приводятся принятые надзорными органами типы и виды газоопасных и взрывоопасных помещений в зависимости от характеристик промышленного производства, видов используемых горючих газов, материалов, высотности и размеров зданий. Скрупулезно изучаются пункты охраны труда для газоопасных и взрывоопасных помещений, технологий и оборудования.

Тема 9. Проектирование газопроводов промышленных предприятий.

9.1. Стадии проектирования. Постановка задачи оптимального проектирования. Потребление и нормы расхода газа. Составление топливного баланса (фактического, планового и перспективного) промышленного предприятия.

Методика проектирования газопроводов и сетей промышленных предприятий, начиная с постановки задачи и оптимизации проектирования, указывается последовательность и стадии проектирования. Указываются характеристики и параметры, которые необходимо включать в постановку задачи проектирования, выбора метода проектирования и оптимизации расчетов в зависимости от норм расхода, видов и характеристик газообразного топлива. Методика составления топливного баланса предприятия, а также специфические параметры в зависимости от его типа. Рассматриваются характерные параметры и пункты расчета фактического, планового и перспективного топливного баланса промышленного предприятия.

9.2. Графики потребления газа и методы покрытия пиков. Часовая, суточная и сезонная неравномерность потребления.

Графики потребления газа отдельными цеховыми технологиями и теплоэнергетическим оборудованием (водогрейные и паровые котлы, когенерационные, турбинные и поршневые установки), общецеховые и общезаводские графики. Часовая, суточная и сезонная неравномерность потребления. Методы и технологии покрытия неравномерностей и пиков потребления.

Тема 10. Защита газопроводов от коррозии.

Рассматриваются условия и причины возникновения коррозии металлических газопроводов. Пассивная и активная антикоррозионная защита. Технологии активной защиты (катодная, анодная и т. д.).

Тема 11. Техника безопасности газового хозяйства промыш-ленного предприятия.

Подробно изучается техника безопасности и охрана труда при эксплуатации и ремонтных работах газового хозяйства промышленных предприятий.

ЗАДАНИЕ К КУРСОВОЙ РАБОТЕ

Требуется рассчитать общезаводской газопровод, от которого осуществляется газоснабжение пяти производственных цехов завода, работающих в три смены и питающихся газом от центрального заводского ГРП. В систему газоснабжения входит также обеспечение газом от ГРП коммунально-бытовых потребителей с расходом $B_{\kappa/6}$, нм³ газа в год, а так же подача газа среднего давления (не менее 0,1 бар избыточного давления) с отводом перед регулятором давления общезаводского ГРП на отопительную котельную. Расход газа на котельную составляет $B_{\rm or}$, нм³ за отопительный сезон.

Значения $B_{\kappa/6}$, $B_{\text{от}}$, а также B_1 , B_2 , B_3 , B_4 и B_5 часовых зимних расходов газа цехами приведены в табл. 15 и 16. В этих же таблицах заданы начальное давление газа, давление газа в месте отвода к наиболее удаленному цеху; указаны вид газа и количество местных сопротивлений для каждого участка межцехового газопровода; приведен часовой расход газа на производство в летние месяцы (май–август) как функция часовых зимних расходов.

В объем курсовой работы входит:

- построение годового графика потребления газа и определение его расчетных часовых расходов;
- выбор общей схемы подачи газа заданным потребителям и составление расчетной схемы;
- гидравлический расчет межцехового газопровода низкого давления;
- гидравлический расчет газопровода среднего давления от ввода до ГРП (с подбором фильтров, счетчика расхода газа и регуляторов давления);
- графическая часть, вычерченная схема подачи газа заданным потребителям (в масштабе) и схема ГРП.

В начале расчетно-пояснительной записки приводится задание и исходные данные. В конце дается заключение по итогам расчета.

1. Построение годового графика потребления газа и определение его расчетных расходов

Годовые расходы на отопление и коммунально-бытовые нужды приводятся в исходных данных (табл. 15 и 16). Для определения

суммарного годового расхода газа в целом по объекту газоснабжения нужно определить также годовой расход газа на производственные нужды. Такой расход определяется исходя из заданных зимних и летних часовых расходов газа цехами и количества часов их работы в каждом месяце года (без учета праздников и выходных дней). Расчет выполняется в соответствии с табл. 1.

Таблица 1 Расход газа по цехам (при пятидневной рабочей неделе)

Месяцы	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Кол-во рабочих дней	21	20	22	22	20	22	22	22	22	22	21	21
Кол-во рабочих часов	504	480	528	528	480	528	528	528	528	528	504	504
Расход газа, нм ³												

Примечание. Всего рабочих дней – 257, всего рабочих часов – 6168.

Зная расчетный годовой расход газа на производственные нужды $B_{\rm np},\;$ можно рассчитать суммарный его расход по объекту газоснабжения

$$B_{
m rog} = B_{
m np} + B_{
m k/\delta} + B_{
m ot}, \ {
m Hm}^3/{
m rog}.$$

Для составления годового графика расхода газа нужно знать распределение по месяцам года заданных годовых расходов на отопление и коммунально-бытовые нужды. Необходимые для этого сведения приведены в табл. 2, где указывается их процентное распределение.

Используя данные табл. 1 и 2, составляем сводную таблицу 3, на основании которой строится график годового расхода газа объектом газоснабжения. Этот график дает наглядное представление о струк-

туре потребления газа по всему объекту газоснабжения и о распределении расхода газа по месяцам года.

Таблина 2

Распределение по месяцам годового количества газа, расходуемого на отопление и коммунально-бытовые нужды (включая горячее водоснабжение)

Месяц	Размер- мер- ность	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Всего
На	%	19,2	16	14,2	9,1	2,43	1,1	1,0	0,9	1,9	7,7	11,7	14,5	100
отопление	HM^3													
На к/б	%	11,5	11,1	10,9	9	6,7	5,3	5	4,7	5,6	8,2	10,7	11,3	100
нужды	HM ³													
Сумма на	%													
к/б и от.	HM ³													

Таблина 3

Суммарный расход газа объектом газоснабжения по месяцам, нм³

Группа	Обозна-							M	есяц					
Группа потребителей	чение	T	п	ш	IV	V	VI	VII	VIII	IV	v	VI	VII	Всего
потребителей	чение	1	11	111	1 V	V	VI	VII	VIII	IЛ	Λ	ЛІ	ΛII	за год
Отопление	$B_{ m or}$													
К/б нужды	$K_{\kappa/\delta}$													
Промышленное потребление	$B_{ m np}$													
Сумма	$B_{ m oбщee}$													

Далее, используя данные табл. 3, определяют расчетный максимальный часовой расход газа в зимний и минимальный часовой расход газа в летний периоды.

Максимальный часовой расход газа на отопление рассчитывается для самых холодных зимних суток года по формуле

$$(B_{\text{OT}})_{\text{max}} = \frac{(B_{\text{OT}})_{\text{max,M}}(t_{\text{BH}} - t_{\text{H,max}})}{24n(t_{\text{BH}} - t_{\text{H,cp}})}, \text{ HM}^3/\text{q},$$

где $(B_{\text{от}})_{\text{max,M}}$ — месячный расход газа на отопление для месяца максимального расхода газа (берется из табл. 3, обычно это январь); n — число календарных дней для данного месяца;

 $t_{\rm BH}$ — средняя температура внутри отапливаемого помещения, $t_{\rm BH} = 18~^{\circ}{\rm C};$

 $t_{\rm H,cp}-$ средняя температура наружного воздуха в расчетном месяце. Принимается в зависимости от климатического пояса. Для Беларуси она может быть принята равной $-7~^{\circ}{\rm C}$;

 $t_{
m H,max}$ — максимально низкая расчетная температура наружного воздуха для данного зимнего месяца, также зависящая от климатического пояса. Для Беларуси она может быть принята равной $-24~^{\circ}{\rm C}$.

Летом, как правило, расхода газа на отопление производственных и жилых помещений нет. Есть лишь сравнительно небольшой его расход на горячее водоснабжение жилого сектора. При определении же минимального часового расхода в году его можно не учитывать, так как минимум расхода приходится на ночные часы, а в это время водоразбор в квартирах отсутствует.

Максимальный часовой расход газа зимой на коммунальнобытовые нужды определяется по формуле

$$(B_{\text{K/6}})_{\text{max}} = \frac{(B_{\text{K/6}})_{\text{max, M}} \cdot 7}{n} a \epsilon, \text{ HM}^3/\text{q},$$

где $(B_{\text{K/f}})_{\text{max, M}}$ — месячный расход на коммунально-бытовые нужды для месяца максимального в году общего расхода газа (выбирается из табл. 3);

n — число календарный дней этого месяца;

$$\frac{\left(B_{\text{K/fo}}\right)_{\text{max, M}}\cdot7}{n}$$
 — расход газа на коммунально-бытовые нужды за неделю;

a — коэффициент, определяющий долю максимального суточного расхода газа на коммунально-бытовые нужды в течении недели

(обычно это конец недели – пятница). В расчетах он может быть принят 0,18;

в – коэффициент, определяющий долю максимального часового расхода газа на коммунально-бытовые нужды в течении зимних суток. В расчетах этот коэффициент может быть принят равным 0,109.

Аналогично этому определяется и минимальный часовой, в течение всего года, расход газа летом на коммунально-бытовые нужды. Значение минимального часового расхода требуется для оценки режима работы принятых на ГРП регуляторов давления:

$$(B_{\text{K}/6})_{\text{min}} = \frac{(B_{\text{K}/6})_{\text{min, M}} \cdot 7}{n'} a' s', \text{ HM}^3/\text{H},$$

где $(B_{K/\delta})_{\min, M}$ — расход газа на коммунально-бытовые нужды для месяца минимального в году расхода газа (выбирается из табл. 3); n' — число календарный дней этого месяца;

$$\frac{\left(B_{\text{к/б}}\right)_{\min, \text{ м}} \cdot 7}{n'}$$
 — расход газа на коммунально-бытовые нужды за неделю;

a' — коэффициент, определяющий долю минимального суточного расхода газа на коммунально-бытовые нужды в течении недели (обычно это выходной день). В расчетах он может быть принят 0,129.

 $\theta' - коэффициент, определяющий долю минимального часового расхода газа на коммунально-бытовые нужды в пределах летних суток. В расчетах этот коэффициент может быть принят <math>0.001$.

Минимальные и максимальные часовые расходы газа в году на промышленные нужды $\left(B_{\rm пp}\right)_{\rm min}$ и $\left(B_{\rm np}\right)_{\rm max}$ указаны в задании.

Результаты всех выполненных расчетов сводятся в табл. 4.

Сводная таблица расхода газа по объекту

$N_{\underline{0}}$	Категории	Размерность	Отопп	К/б	Производные	Всего
Π/Π	расхода	тазмерноств	01011.1.	нужды	нужды	DCCIO
1	Годовой расход	HM ³				
	Месячный рас-	HM^3				
2	ход:	HM				
	тах. расход	HM ³				
	тіп. расход	HM				
	Часовой расход:	HM^3/H				
3	тах. расход	2 .				
	min. pacход	нм ³ /ч				

2. Выбор общей схемы подачи газа заданным потребителям и составление расчетной схемы

После определения расчетных (максимальных часовых) расходов газа всеми потребителями, питающимися от заводского газопровода, составляют общую схему газопровода, на которую впоследствии нужно нанести полученные в ходе расчета диаметры участков.

В условиях реального проектирования системы заводского газоснабжения схему наносят на ситуационный план предприятия, на котором в масштабе очерчена территория завода, указано расположение отдельных объектов газоснабжения (цехов), подземные сооружения (промразводки, каналы и другие сооружения) и присоединяемые к системе заводского газоснабжения коммунальные и коммунально-бытовые потребители газа (столовые, ясли, школы и т. п.). Все это позволяет произвести правильный выбор места ввода газа на территорию промышленного предприятия, определить необходимость и месторасположение центральных и цеховых ГРП, сгруппировать для присоединения к ним потребителей газа, а затем выбрать трассу общезаводского газопровода, размещая на ней конденсатоотводчики, задвижки и т. п. Одновременно с этим решается вопрос о типе системы газопровода (тупиковая, комбинированная или кольцевая) и о давлении, до которого должно осуществляться редуцирование газа за ГРП (среднее или низкое).

В данной работе схема расположения заводского ГРП и газопровода составляется на основании исходных данных задания. На этой схеме условно изображаются и те здания, куда по заданию подводится газ от распределительного межцехового газопровода. На основе такой схемы, исходного задания и табл. 4, составляется расчетная схема (рис. 1).

Верхняя часть расчетной схемы представляет собой подлежащие расчету участки общезаводского распределительного газопровода. В левой стороне показан участок до ГРП; в правой – межцеховой газопровод (после ГРП).

Значения максимальных часовых расходов B и расчетных значений V (часовое количество газа, проходящее через рассматриваемое сечение), должны указываться на схеме в масштабе. Участок газопровода до ГРП рассчитывается с запасом по расходу в 25 %, для эффективного регулирования давления. В связи с этим

$$V_{
m ДO\ \Gamma P\Pi} = 1,25 \Big(\sum B_{
m \Pi p} + B_{
m K/\tilde{0}} + B_{
m OT} \Big), \ {
m Hm}^3/{
m q}.$$

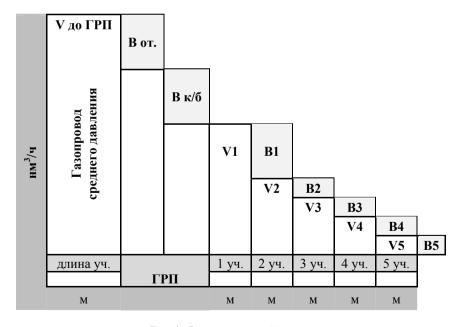


Рис. 1. Форма расчетной схемы

3. Гидравлический расчет межцехового газопровода низкого давления

По принятой в проектных организациях Республики Беларусь методике, гидравлический расчет общезаводского газопровода начинается с расчета его участков после ГРП. Согласно заданию — это участки низкого давления.

Из схемы (см. рис. 1) видно, что расчетный расход газа V_i убывает в направлении от первого к последнему рассматриваемому участку. В соответствии с этим диаметр участков должен либо уменьшаться (при сохранении задаваемой скорости газа не менее 10 м/с для природного газа, 15 м/с для искусственных газов, и не более 30 м/с для всех видов горючих газов) или оставаться неизменным. Во втором случае будет наблюдаться уменьшение скорости газа по его ходу к последнему расчетному участку.

Расчет участков газопровода низкого давления (межцеховой газопровод) после ГРП сводится к подбору их диаметров с тем, чтобы при этом наиболее полно выполнялись условия:

- а) значение $\sum \Delta P$ всех участков после ГРП не должно превышать 0,5 h_{κ} ;
- б) общий перепад давления $\sum \Delta P$ должен, по возможности, равномерно распределяться между отдельными участками межцехового газопровода;
- в) диаметры смежных участков нужно уменьшать в направлении от ГРП (без значительных скачков).

Перепад давления на погонный метр длины рассчитываемого участка газопровода низкого давления $h=\frac{\Delta P}{L}$, для определенного сорта газа и характера движения зависит только от расхода V и выбранного диаметра участка.

По табл. 6–8 $h=f\left(V,d\right)$, задаваясь разными диаметрами при расходе V, величина которого выбирается из схемы (см. рис. 1) для соответствующих участков, находят для каждого из участков значения h. Зная h и длину участка L, рассчитывают величину ΔP . Однако при этом в качестве L следует брать не фактическую длину расчетного участка L_{Φ} , а приведенную $L_{\text{пр}}$.

$$L_{\Pi p} = L_{\Phi} + L_{3KB}$$
,

где $L_{\rm 3KB}$ — условное увеличение длины участка вследствие наличия на нем местных сопротивлений (поворотов, арматуры и т. п.), увеличивающих потерю напора ΔP на участке.

Расчет $L_{\rm 3KB}$ целесообразно выполнять одновременно с определением ΔP по участкам и осуществлять его по прилагаемой форме, (табл. 9).

Зная из расчетной схемы (см. рис. 1) величину V для каждого расчетного участка газопровода, предварительно выбирают его диаметр исходя из скорости порядка $10{-}15-$ для природного и $15{-}20$ м/с — для коксового и доменного газа. Затем в соответствии со стандартами подбирают два—три ближайших к расчетному стандартных диаметра труб. Для каждого из принятого диаметра газовой трубы определяют $L_{\rm пр}$ и, пользуясь табл. $6{-}8$, находят $\Delta P = h \cdot L_{\rm пр}$. При этом

$$L_{\text{ЭКВ}} = l_{\text{ЭКВ}} \sum \varepsilon,$$

где $\sum \varepsilon$ – сумма коэффициентов местных сопротивлений (значения приводятся в паспортах производителей). Некоторые примеры данных, касающихся местных сопротивлений, приведены в табл. 5;

 $l_{\rm ЭКВ}$ — условная длина прямолинейной трубы при ϵ = 1, м (приведены в табл. 6–8).

Таблица 5

Значения коэффициентов є
для некоторых видов местных сопротивлений

		Условный	проход Dy	, MM	
100	125	150	200	250-300	350 и более
Зна	ачение є дл	я сварных	отводов пр	и повороте	на 90°
0,43	0,46	0,47	0,49	0,51	0,53

	Значение ε	для задвих	кек (степен	нь открыти:	я ¾)
0,6	0,55	0,5	0,46	0,42	0,4
	Значен	ие є для ко	онденсатоо	тводчиков	
0,5	0,6	0,7	1,0	1,5	2,0
Д	ля плавног	о сужения	трубопров	одов (конф	узор)
на	а один типо	размер: 0,	25; на два т	гипоразмер	oa: 0,3
	для вне	запного су	жения труб	бопроводов	3
Н	а один типо	размер: 0	,3; на два т	ипоразмера	a: 0,4

Закончив все расчеты и сведя их в табл. 9, делаем окончательный выбор диаметров газопроводов отдельным расчетных участков. Для принятых диаметров определяем суммарную потерю давления $\sum \Delta P$. Проверяем, чтобы выполнялось условие $\sum \Delta P \leq 0,5hk$.

 P_2 — абсолютное давление, которое должен поддерживать регулятор в межцеховом газопроводе, бар:

$$P_2 = P_{\text{dap}} + (h_{\kappa} + \sum \Delta P), \text{ dap},$$

где h_{κ} — давление в конце наиболее отдаленного от ГРП расчетного участка межцехового газопровода, бар;

 $P_{\sf бар}$ – барометрическое давление, бар.

Если условие не выполняется, то необходимо принять трубу на участке с максимальным ΔP на один размер больше (с меньшим h), затем на втором по величине ΔP и соответствующем участке и т. д.

Гидравлическая таблица $h=f(V_0;D_{\rm y})$ и $l_{\rm 9}=f(V_0;D_{\rm y})$ для газа с $\rho_0=0,79$ кг/нм³

		l_{3} , M	17	23,7	23,8	24,0	24,4	5,1	25,8	26,3	26,8	26,8	26,8	26,8	26,8
	350 14"		1					25,	2;						
	3	V_0 , HM 3 /4	16	2413	2520	2626	2732	3087	3441	3710	3962	4178	4480	4620	4831
e e	0	l_3 , M	15	18,8	19,0	19,1	19,3	20,4	20,5	20,8	21,3	21,6	22,0	22,0	22,0
ПОВНЫ	300	V_0 , н ${ m M}^3$ /ч	14	1568	1657	1706	1775	2006	2236	2450 20,8	2660	2825	2937	3068	3200
ые бесі	0	l_{9} , M	13	14,5	14,6	14,7	15,0	15,4	15,9	16,2	16,5	16,8	17,0	17,3	17,4
Трубы стальные бесшовные	250 10"	V_0 , н ${ m M}^3$ /ч	12	996	1009	1051	1093	1235	1379	1505	1625	1740	1846	1952	2022
эубы с	0,	l_{2} , M	11	10,6	10,7	10,7	10,9	11,2	11,6	11,8	12,0	12,3	12,4	12,6	12,7
T	200	V_0 , HM 3 /4	10	535	559	582	909	685	763	835	901	964	1023	1082	1137 12,7 2022 17,4 3200 22,0
	150 6"	l_{2} , M	6	6,7	8,9	8,9	6,9	7,1	7,3	7,5	7,6	7,7	7,8	7,9	8,0
	150 6"	V_0 , HM $^3/$ ч	8	220	230	240	249	282	314	343	371	397	421	445	468
2-58	5,	l_{3} , M	7	5,0	5,1	5,1	5,2	5,3	5,5	9,5	5,7	5,8	5,9	6,0	6,0
Трубы ГОСТ 8732-58	125	V_0 , HM 3 /4	9	131	137	142	147	167	186	203	219	235	249	263	277
ы ГОС	100 4"	l_{3} , M	5	3,7	3,7	3,7	3,8	3,9	4,1	4,2	4,2	4,3	4,3	4,4	4,4
Tpy6	100	V_0 , HM 3 /ч	4	72,0	75,2	78,4	81,6	92,2	103	112	121	130	138	146	153
бы вые СТ 2-55	." ."	$l_{\scriptscriptstyle 3},$ M	3	2,8	2,8	2,8	2,8	2,9	3,0	3,1	3,1	3,2	3,2	3,2	3,3
Трубы газовые ГОСТ 3262-55	ε 08	V_0 , HM 3 /ч	2	42,3	44,2	46,0	6,74	54,1	60,3	8,59	71,2	76,2	80,9	85,5	6,68
Сортамент труб	$D_{\mathcal{Y}}$, MM	<i>h</i> , мбар	1	0,008	0,009	0,009	0,01	0,013	0,015	0,018	0,02	0,023	0,025	0,028	0,03

17	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	0	26,8	26,8 26,8	26,8
16	5025 2	5219	5395 2	5572 2	5748 2	5915 2	6074	6232	6382 2	6541 2	6681 2	6833 2	6973 2	7635 2	8240 2		7 0700	_	
15	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	0000		-	++
14	3337	3466	3585	3702	3817	3928	4029	4139	4238	4344	4440	4537	4631	5070	5454	5855			
13	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4		17,4	17,4
12	2094	2170	2246	2320	2391	2460	2525	1593	2655	2722	2780	2842	2901	3176	3430	3668	1001	4091	4091
11	12,9	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	130	2,0	13.0
10	1192	1243	1291	1312	1353	1393	1430	1467	1503	1540	1573	1609	1640	1798	1941	2076	2320		2543
6	8,1	8,2	8,3	8,4	8,4	8,5	9,8	9,8	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7		8.7
8	491	512	531	551	270	290	609	627	645	959	671	989	700	992	828	885	686		1084
7	6,1	6,5	6,5	6,3	6,4	6,4	6,5	6,5	9,9	9,9	9,9	6,7	6,7	6,7	6,7	6,7	6,7		47
9	290	303	314	326	337	348	360	371	381	392	401	411	421	462	499	534	262	, = ,	4
5	4,5	4,6	4,6	4,7	4,7	4,7	4,8	4,8	4,8	4,8	4,9	4,9	4,9	4,9	5,0	5,0	5,0	,	_
4	160	167	174	180	187	193	199	205	211	217	222	227	321	258	280	300	334	170	
3	3,3	3,4	3,4	3,4	3,5	3,5	3,5	3,6	3,6	3,6	3,6	3,7	3,7	3,8	3,8	3,9	3,9	2.0	
2	94,2	98,3	102	106	109	113	117	120	124	127	130	133	136	151	166	179	200	218	
1	0,033	0,035	0,038	0,04	0,043	0,045	0,048	0,05	0,053	0,055	0,058	90,0	0,063	0,075	0,088	0,1	0,13	0.15	
					l	l													

Продолжение табл. 6

_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_
17	23,8	24,0	24,4	25,1	25,8	26,3	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8
16	2520	2626	2732	3087	3441	3710	3962	4178	4480	4620	4831	5025	5219	5395	5572	5748	5915	6074	6232	6382	6541	6681
15	19,0	19,1	19,3	20,4	20,5	20,8	21,3	21,6	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0
14	1657	1706	1775	2006	2236	2450	2660	2825	2937	3068	3200	3337	3466	3585	3702	3817	3928	4029	4139	4238	4344	4440
13	14,6	14,7	15,0	15,4	15,9	16,2	16,5	16,8	17,0	17,3	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4
12	1009	1051	1093	1235	1379	1505	1625	1740	1846	1952	2022	2094	2170	2246	2320	2391	2460	2525	1593	2655	2722	2780
11	10,7	10,7	10,9	11,2	11,6	11,8	12,0	12,3	12,4	12,6	12,7	12,9	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0
10	529	582	909	685	763	835	901	964	1023	1082	1137	1192	1243	1291	1312	1353	1393	1430	1467	1503	1540	1573
6	8,9	8,9	6,9	7,1	7,3	7,5	7,6	7,7	7,8	7,9	8,0	8,1	8,2	8,3	8,4	8,4	8,5	8,6	8,6	8,7	8,7	8,7
8	230	240	249	282	314	343	371	268	421	445	468	165	512	531	551	270	069	609	627	645	959	671
7	5,1	5,1	5,2	5,3	5,5	5,6	5,7	5,8	5,9	6,0	6,0	6,1	6,5	6,5	6,3	6,4	6,4	6,5	6,5	9,9	9,9	9,9
9	137	142	147	167	186	203	219	235	249	263	277	290	303	314	326	337	348	360	371	381	392	401
5	3,7	3,7	3,8	3,9	4,1	4,2	4,2	4,3	4,3	4,4	4,4	4,5	4,6	4,6	4,7	4,7	4,7	4,8	4,8	4,8	4,8	4,9
4	75,2	78,4	81,6	92,2	103	112	121	130	138	146	153	160	167	174	180	187	193	199	205	211	217	222
3	2,8	2,8	2,8	2,9	3,0	3,1	3,1	3,2	3,2	3,2	3,3	3,3	3,4	3,4	3,4	3,5	3,5	3,5	3,6	3,6	3,6	3,6
2	44,2	46,0	47,9	54,1	60,3	8,59	71,2	76,2	6,08	85,5	6,68	94,2	6,86	102	106	109	113	117	120	124	127	130
1	0,009	0,009	0,01	0,013	0,015	0,018	0,02	0,023	0,025	0,028	0,03	0,033	0,035	0,038	0,04	0,043	0,045	0,048	0,05	0,053	0,055	0,058

Окончание табл. 6

1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17
90,0	133	3,7	<i>1</i> 77	4,9	411	6,7	989	8,7	1609	13,0	2842	17,4	4537	22,0	6833	26,8
0,063	136	3,7	321	4,9	421	6,7	700	8,7	1640	13,0	1067	17,4	4631	22,0	8269	26,8
0,075	151	3,8	857	4,9	462	6,7	992	8,7	1798	13,0	9118	17,4	0205	22,0	2637	26,8
0,088	166	3,8	087	5,0	499	6,7	828	8,7	1941	13,0	3430	17,4	5454	22,0	8240	26,8
0,1	179	3,9	00ε	5,0	534	6,7	885	8,7	2076	13,0	8998	17,4	2882	22,0	8820	26,8
0,13	200	3,9	334	5,0	297	6,7	686	8,7	2320	13,0	4091	17,4	6545	22,0	8586	26,8
0,15	218	3,9	298	5,0	654	6,7	1084	8,7	2543	13,0	4493	17,4	7172	22,0	10800	26,8
0,18	236	3,9	268	5,0	902	6,7	1171	8,7	2746	13,0	4852	17,4	7746	22,0	11660	26,8
0,2	252	3,9	423	5,0	752	6,7	1248	8,7	2927	13,0	9819	17,4	8228	22,0	12460	26,8
0,25	283	3,9	474	5,0	844	6,7	1399	8,7	3281	13,0	6625	17,4	9526	22,0	13940	26,8

h — потери давления на погонный метр трубы, мбар;

 D_{y} — условный проход трубы, мм (для фланцевых соединений) или дюймы (для резьбовых соеди-

 l_3 — эквивалентная длина прямой трубы при коэффициенте местного сопротивления $\epsilon = 1$, м; V_0 — объемный расход газа, проходящего через трубу, при нормальных условиях, нм 3 /ч;

 $\rho_0 -$ плотность газа при нормальных условиях, кг/нм 3 .

- числа над жирной линией относятся к области гидравлической гладкости;

– числа под жирной линией относятся к области гидравлической шероховатости.

Гидравлическая таблица $h=f(V_0;D_{\rm y})$ и $l_{\rm 9}=f(V_0;D_{\rm y})$ для газа с $\rho_0=0,73$ кг/нм³

80 100 3" 4 " l_3 , V_{0_3} , l_3 , l_3 3,0 108 4,1 3,1 117 4,2 3,1 127 4,2 3,1 127 4,2 3,2 136 4,3 3,2 153 4,4 3,3 167 4,5	L ₃ , 1 M HN 7 7 5,6 3 5,7 3 5,8 3		200 8" 8" V ₀ , HM ³ /4 10 799 1 874 1	<i>l</i> э, м	$ \begin{array}{c c} 250 \\ 10^{\circ} \\ V_0, \\ HM^3/4 \\ 12 \\ 1443 \\ 1 \end{array} $,	300		350 14"	l_3 ,
L ₃ , V ₀ , L ₃ , M HM ³ /4 M M HM ³ /4 M M M M M M M M M M M M M M M M M M M			V ₀ , нм ³ /ч 10 799 874			1	V_{c}			l_{\imath}
3,0 108 4,1 3,1 117 4,2 3,1 127 4,2 3,2 136 4,3 3,2 144 4,3 3,2 153 4,4 3,3 160 4,4 3,3 167 4,5			10 799 874	11		, 3, M	$^{\prime}_{\rm M}^{0}$	$l_{\scriptscriptstyle 9},$ M	V_0 , H M^3 /ч	M
3,0 108 4,1 3,1 117 4,2 3,1 127 4,2 3,2 136 4,3 3,2 144 4,3 3,2 153 4,4 3,3 160 4,4 3,3 167 4,5			874			13	14	15	16	17
3,1 117 4,2 3,1 127 4,2 3,2 136 4,3 3,2 144 4,3 3,2 153 4,4 3,3 160 4,4 3,3 167 4,5			874	11,7		16,1	2340	20,7	3601	26,1
3,1 127 4,2 3,2 136 4,3 3,2 144 4,3 3,2 153 4,4 3,3 160 4,4 3,3 167 4,5		ŀ		11,9	1575	16,4	2564	21,0	3883	26,6
3,2 136 4,3 3,2 144 4,3 3,2 153 4,4 3,3 160 4,4 3,3 167 4,5		8 7,7	943	12,1	1701	16,7	2763 21,5	21,5	4147	26,8
3,2 144 4,3 3,2 153 4,4 3,3 160 4,4 3,3 167 4,5	5,9 415	5 7,8	1000	12,4	1821	17,0	2957	21,8	4347	28,8
3,2 153 4,4 3,3 160 4,4 3,3 167 4,5	6,0 441	1. 7,9	1071	12,5	1932	17,2	3189	22,0	4661	26,8
3,3 160 4,4 3,3 167 4,5	6,1 466	0,8 9,0	1132	12,7	2043	17,4	3192	22,0	4807	26,8
3,3 167 4,5	6,1 489	9 8,1	1190	12,8	2104	17,4	3330	22,0	5027	26,8
7	6,2 514	4 8,2	1247	13,0	2179	17,4	3472	22,0	5228	26,8
102 3,4 175 4,6 317	6,3 536	6 8,3	1293	13,0	2258	17,4	3606	22,0	5430	26,8
107 3,4 182 4,6 329	6,3 556	6 8,4	1343	13,0	2337	17,4	3730	22,0	5613	26,8
111 3,4 188 4,7 341	6,4 577	7 8,5	1365	13,0	2414	17,4	3852	22,0	5798	26,8
114 3,5 196 4,7 353	6,5 597	7 8,5	1408	13,0	2488 17,4	17,4	3972 22,0	22,0	5981	26,8

Окончание табл. 7

_	_			_	_	_	_	_	_				_						_		
17	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8	26,8
16	6155	6320	6484	6640	9089	6952	7110	7255	7944	8574	9177	10255	11237	12132	12965	14505	15888	17168	18344	19457	13620 22,0 20508
15	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0	22,0
14	4087	4192	4307	4410	4520	4620	4721	4819	5275	5675	6092	6810	7462	8060	8613	9631	10551	11393	12184	12923	
13	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4
12	2560	2677	2698	2762	2832	2893	2957	3018	3305	3569	3817	4257	4675	5049	5396	6034	6099	7140	7633	8095	8534
11	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0	13,0
10	1449	1488	1526	1564	1602	1637	1674	1706	1874	2020	2160	2414	2646	2857	3046	3414	3741	4052	4320	4581	4830
6	9,8	8,6	8,6	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7
8	617	637	652	671	683	869	714	728	797	862	921	1029	1128	1218	1298	1456	1594	1722	1842	1953	2059
7	6,5	6,6	9,9	6,7	6,7	6,7	6,7	6,7	6,7	6,7	6,7	6,7	6,7	6,7	6,7	6,7	6,7	6,7	6,7	6,7	6,7
9	364	377	388	399	410	420	430	440	481	519	929	621	089	735	783	878	962	1039	1111	1179	1242
5	4,7	4,8	4,8	4,8	4,9	4,9	4,9	4,9	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0
4	202	208	215	221	227	232	237	243	270	167	312	348	382	413	440	490	540	584	624	799	869
3	3,5	3,5	3,6	3,6	3,6	3,6	3,7	3,7	3,8	3,8	3,9	3,9	3,9	3,9	3,9	3,9	3,9	3,9	3,9	3,9	3,9
2	118	122	125	129	132	136	139	142	158	173	186	208	227	246	262	294	323	349	372	395	416
1	0,045	0,048	0,050	0,053	0,055	0,058	0,060	0,063	0,075	0,088	0,100	0,125	0,150	0,175	0,200	0,250	0,300	0,350	0,400	0,450	0,500

- h потери давления на погонный метр трубы, мбар;
- D_y условный проход трубы, мм (для фланцевых соединений) или дюймах (для резьбовых соединений);
- V_0 объемный расход газа, проходящего через трубу, при нормальных условиях, нм 3 /ч;
- $l_{\rm 9}$ эквивалентная длина прямой трубы при коэффициенте местного сопротивления $\epsilon=1$, м;
 - ho_0 плотность газа при нормальных условиях, кг/нм 3 .
- числа над жирной линией относятся к области гидравлической гладкости;
- числа под жирной линией относятся к области гидравлической шероховатости.

Гидравлическая таблица $h=f(V_0;D_{\rm y})$ и $l_{\rm 3}=f(V_0;D_{\rm y})$ для газа с $\rho_0=0,5$ кг/нм³

			٦		7	0,	4,	∞,	ζ	4,	۲,	۲,	۲,	۲,	7,	۲,	7
		350	14	$l_{\scriptscriptstyle 3}$,	17	24,0	24,4	24,8	25,2	25,4	25,7	25,7	25,7	25,7	25,7	25,7	25
		5E	17	V_0 , H $ m M^3/4$	16	5209	5533	56843	6134	6422	2029	5629	7020	7230	7450	0592	7840 257
	o.	0		$l_{\scriptscriptstyle 3},$ M	15	19,2	19,5	19,8	20,0	20,2	20,5	20,7	20,9	21,0	21,0	5075 21,0	21.0
	ШОВНЫ	300	71	V_0 , HM 3 /ч	14	3400	3623	3813	4007	4190	4375	4552	4722	4888	4940	5075	5200 21 0
	ere 6ec	0:0)	l_{3} , M	13	14,9	15,1	15,3	15,5	15,7	15,8	16,0	16,2	16,3	16,4	16,6	16.7
	Трубы стальные бесшовные	250	10	V_0 , HM 3 / 4	12	2094	2221	2344	2468	2581	2696	2803	2908	3014	3101	3212	3302 16.7
	рубы	00		l_{3} , M	11	10,9	11,0	11,2	11,3	11,5	11,6	11,7	11,9	12,0	12,1	12,2	1826 12.2
	H	200	8	V_0 , HM 3 /ч	10	1159	1230	1310	1348	1428	1490	1551	1608	1665	1720	1775	1826
		0,0		$l_{\scriptscriptstyle 3},$ M	6	6,9	7,0	7,1	7,2	7,2	7,3	7,4	7,5	7,5	7,6	7,7	77
		150	9	V_0 , H M^3 / T	8	481	511	539	267	593	619	644	899	691	714	736	092
	2-58	125		$l_{\scriptscriptstyle 3},$ M	7	5,2	5,3	5.3	5,4	5,5	5,5	9,5	9,5	5,7	5,7	8,5	8 5
	Трубы ГОСТ 8732-58	12	C	V_0 , HM 3 /ч	9	283	301	317	333	349	363	386	393	407	414	433	447
	бы ГО(100		$l_{\scriptscriptstyle 3},$ M	5	3,8	3,9	3,9	3,9	4,0	4,0	4,1	4,1	4,2	4,2	4,2	4.3
	Трус	10	4	$V_0, \ _{ m HM}^{3/ m H}$	4	156	166	176	185	193	201	210	218	225	233	240	247
Трубы	газовые ГОСТ 3262-55	80		$l_{\scriptscriptstyle 3}$, M	3	2,9	2,9	2,9	3,0	3,0	3,0	3,1	3,1	3,1	3,2	3,2	3.2
Tpy	газовые ГОСТ 3262-55	∞ ∂	ç	V_0 , HM 3 / 4	2	91,8	97,5	103	108	113	118	123	128	132	136	141	144
	Сортамент труб	D_{ν} , MM		<i>h</i> , мбар	1	0,023	0,025	0,028	0,030	0,033	0,035	0,038	0,040	0,043	0,045	0,048	0.050
<u> </u>	\mathcal{O}																

Окончание табл. 8

1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17
0,053	149	3,2	254	4,3	459	6,5	<i>6LL</i>	7,8	1878	12,3	3350	16,7	5320	21,0	8035	25,7
0,055	153	3,3	261	4,3	472	5,9	802	7,8	1930	12,4	3410	16,7	5450	21,0	8210	25,7
0,058	156	3,3	268	4,3	484	5,9	821	7,8	1979	12,5	3500	16,7	0855	21,0	8400	25,7
0,060	161	3,3	274	4,4	495	6,0	842	7,9	2028	12,6	3570	16,7	5710	21,0	8580	25,7
0,063	165	3,3	281	4,4	202	6,0	198	8,0	9202	12,7	3645	16,7	5820	21,0	8775	25,7
0,075	183	3,4	312	4,5	562	6,1	256	8,1	2270	12,7	4060	16,7	6370	21,0	9610	25,7
0,088	210	3,5	340	4,6	615	6,3	1043	8,3	2440	12,7	4320	16,7	0889	21,0	10300	25,7
0,100	215	3,6	367	4,7	693	6,4	1110	8,4	2610	12,7	4610	16,7	7360	21,0	11100	25,7
0,125	244	3,7	417	4,9	748	9,9	1250	8,4	2920	12,7	5150	16,7	8220	21,0	12400	25,7
0,150	271	3,8	464	5,0	822	9,9	1365	8,4	3205	12,7	5640	16,7	2006	21,0	13600	25,7
0,175	299	6'8	200	5,0	858	9,9	1473	8,4	3330	12,7	0609	16,7	9720	21,0	14700	25,7
0,200	319	6'8	534	5,0	746	9,9	1580	8,4	0698	12,7	6525	16,7	10400	21,0	15700	25,7
0,250	357	3,9	265	5,0	1060	9,9	1765	8,4	4140	12,7	7300	16,7	11610	21,0	17550	25,7
0,300	390	3,9	654	5,0	1160	9,9	1930	8,4	4520	12,7	7960	16,7	12740	21,0	19220	25,7
0,350	403	3,9	902	5,0	1255	9,9	2085	8,4	4890	12,7	8625	16,7	13800 21,0	21,0	20800	25,7

Таблица 9

Определение приведенной длины участков газопровода (после ГРП) и расчет потерь давления на них

	$\Delta P = \frac{\Delta P}{\Delta r}$, $= h \cdot L_{\rm IIP}$, Méap	12	
	Габлич- ное зна- чение <i>h</i> мбар/ пог.м	11	
Привед.	длина y частка $L_{\text{rrp}} = L_{\Phi} + + L_{3 \text{кв}},$ м	10	
Фак-	тич. длина участ- ка Lф, м	6	
й	$L_{9kB} = \lim_{J_{3kB}} \frac{TM4.}{\sum_{S}}$ $= I_{3kB} \cdot \sum_{S} \varepsilon, \text{yyacr-}$ $M \qquad \qquad Ka$ L_{ϕ}, M	8	
ивлени	$l_{ m 9KB},$ M	<i>L</i>	
Расчет местных сопроти	$\sum_{\rm Ha} \epsilon$ участке	9	
т местні	Значе- ние ε	2	
Расче	Кол-во и вид местных сопротивле-	4	
	Приня- тый диаметр участка d_{ν} , мм	3	
	Расчет- ный расход газа V , нм 3 /час	2	
	Номер расчет- ного участка	1	

4. Гидравлический расчет газопровода среднего давления (от ввода до ГРП)

Количество газа, проходящее на этом участке, известно (V до ГРП) при подборе диаметра этого участка газопровода особых ограничений по перепаду давления $\Delta P_{\text{до ГРП}}$ не устанавливается. Однако из соображений экономии металла этот диаметр желательно максимально уменьшить. При этом нужно лишь создать необходимый аванс по давлению перед РД (регулятор давления), исходя из требуемого значения давления P_2 за ним (ранее определенного) и учитывая вероятность снижения в эксплуатации начального давления $P_{\rm H}$ по сравнению с заданным. Этот запас можно считать достаточным, если давление непосредственно перед РД (P_1) будет равным хотя бы $(1,5-1,6)P_2$. Однако нередко перед РД производится отвод газа среднего или высокого давления к потребителям. Давление P_1 ни в коем разе не должно быть ниже 1,1 P_6 .

Отношение $A = \frac{P_{\rm H}^2 - P_{\rm K}^2}{L}$ для определенного вида газа и характе-

ра движения зависит только от количества проходящего газа и диаметра газопровода.

Для области гидравлической шероховатости при расчете значения A можно воспользоваться формулой: для коксового газа

$$A = \frac{0.239 \, V_{\text{до } \Gamma \text{P}\Pi}^2}{d^{5.25}};$$

для газа Дашавского месторождения (природный газ типа LL)

$$A = \frac{0.336 V_{\text{ДО }\Gamma \text{P}\Pi}^2}{d^{5.25}};$$

а для газа Шебелинского месторождения (природный газ типа Е)

$$A = \frac{0.364 V_{\text{ДО }\Gamma \text{P}\Pi}^2}{d^{5.25}}.$$

В этих выражениях диаметр газопровода подставляется в см.

Зная расчетный расход газа V (нм 3 /час) и, задаваясь диаметром газопровода, с помощью номограмм или формул легко находится значение коэффициента A, а затем и P'_{κ} (давление в конце участка перед ГРП без учета потерь давления на фильтрах, счетчиках расхода газа и других местных сопротивлений, смонтированных на участке ввода до ГРП):

$$P_{\rm K}' = (P_{\rm H}^2 - AL_{\rm IID}/1000)^{\frac{1}{2}},$$

где $L_{\rm np}$ — приведенная длина рассчитываемого участка газопровода от ввода до ГРП, м, определенная с учетом местных сопротивлений на этом участке:

$$L_{\text{пр}} = L_{\Phi} + L_{\text{ЭКВ}},$$

где $L_{
m SKB} = l_{
m SKB} \sum \epsilon$.

Значения ε приводится в табл. 5, значения $l_{\text{экв}}$ для области гидравлической шероховатости для газопроводов среднего и высокого давления зависит только от их условного диаметра.

d_y , mm	100	125	150	200	250	300	350	400
$l_{\scriptscriptstyle m ЭKB}$, м	5,0	6,7	8,7	13,0	17,4	22	26	34

Расчет величин $L_{\rm np}$ и $P_{\rm k}$ следует сводить непосредственно в табл. 10, аналогично тому, как это делалось при расчете межцехового газопровода низкого давления.

При определении $L_{\rm пp}$ учитываются все местные сопротивления на участке от ввода до РД. Значение ε для ПЗК (предохранительного запорного клапана), установленного на участке ввода, может быть принято в первом приближении равным 5 или рассчитано отдельно по соответствующей методике, как правило, предоставляемой производителем.

Сопротивления фильтров, счетчика расхода газа при определении величины $L_{\rm пp}$ не учитываются (см. ниже). Они определяются отдельно при их выборе в соответствии с требуемыми параметрами.

После выбора фильтров, счетчика и, при необходимости, ПЗК рассчитывается уточненное значение конечного давления газа перед ГРП:

$$P_{\rm \scriptscriptstyle K} = P_{\rm \scriptscriptstyle K}' - \sum \Delta P_{\rm \scriptscriptstyle \Phi} - \sum \Delta P_{\rm \scriptscriptstyle CH} - \sum \Delta P_{\rm \scriptstyle \Pi 3K}. \label{eq:pk}$$

При выполнении расчетов и заполнения табл. 10 рекомендуется задаваться двумя—тремя смежными диаметрами газопровода.

Поскольку на этих, сравнительно небольших, участках газопровода среднего давления от ввода до ГРП (обычно 100-150 м) допускается достаточно большой перепад давления, здесь нет необходимости соблюдать малые значения скорости газа. Обычно этот участок заводского газопровода имеет диаметр 100-200 мм. С этих значений нужно назначить их подбор, помня, что P_{κ} должно быть, как минимум, в 1,5-1,6 раза больше P_2 . В соответствии с данными табл. 9 принимается тот меньший диаметр, который обеспечивает соблюдение условия

$$P_{\rm K} \ge (1,5-1,6)P_2$$
.

Определение приведенной длины участка газопровода от ввода до ГРП и расчет потерь давления на этом участке

	$P_{ m K},$ MIIa	14	
	$P_{\scriptscriptstyle m H},$ MIIa	13	
	$\frac{A \cdot L_{\rm np}}{1000}$	12	
	Значение коэффи- пиента 1000	11	
	$L_{ m up} = L_{ m th} + $ Значение $A \cdot L_{ m up}$ $P_{ m is} + P_{ m ss}$ $+ L_{ m bss},$ циента 1000 МПа МПа МПа	10	
		6	
	$L_{\rm 3KB} = $ $= I_{\rm 3KB} \sum_{\rm M} \varepsilon,$	8	
авлений	, _{ЭКВ} , М	7	
к напр	\sum_{ϵ}	9	
Расчет местных направлений	Значение Е	5	
Pac	$\frac{1}{2}$ Кол-во $\frac{1}{2}$ Значение $\frac{1}{2}$ $\frac{1}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	4	
	Крите риальн $_{\mu}$ диамет d_{ν} , мм	3	
	Расчетный расход газа до ГРП, нм³/ч	2	
	Pac Nº p p Bapnaн- r ra	1	

5. Выбор фильтров, счетчиков газа и определение давления газа P_1 перед регулятором давления (РД)

Как указывалось выше, при определении сопротивления газопровода от ввода до ГРП не учитывалось сопротивление фильтров и счетчиков расхода газа.

Абсолютное давление газа перед РД определяется по формуле

$$P_1 = P_K - (\alpha \Delta P_{\phi} + \beta \Delta P_{cq} + P_{\Pi 3K}), \text{ fap,}$$

где P_{κ} – давление в конце участка среднего давления газа (до ГРП);

 α — коэффициент, учитывающий степень загрязнения фильтра. Для чистого фильтра равен 1. Максимально разрешенное его значение зависит от конструкции фильтра, входного давления и определяется производителем (таблицы или монограммы в паспортах). Обычно для предварительных расчетов принимают равным 2. При достижении максимально разрешенного значения требуется очистка фильтра или замена картриджа;

 β — коэффициент, учитывающий степень загрязнения счетчика. Для чистого счетчика равен 1. Максимально разрешенное его значение зависит от конструкции счетчика, входного давления и определяется производителем (таблицы или монограммы в паспортах). Обычно для предварительных расчетов принимают равным 2. При достижении максимально разрешенного значения требуется очистка счетчика;

 $\Delta P_{\rm th}$ – сопротивление чистого фильтра;

 $\Delta P_{\text{сч}}$ – сопротивление чистого счетчика.

Для ПЗК можно принять значение коэффициента є равным 5. Зная D_y газовой трубы на которой установлен ПЗК и номинальный расход газа, из табл. 6–8 определяем удельное значение $l_{\rm 9KB}$. Тогда $t_{\rm 1D}$

 $L_{\text{экв}}^{\Pi 3\text{K}} = l_{\text{экв}} \cdot \varepsilon$, а потери давления на $\Pi 3\text{K}$:

$$\Delta P_{\Pi 3K} = L_{3KB}^{\Pi 3K} \cdot h$$
, бар.

5.1. Выбор газовых фильтров.

Газовые фильтры предназначены для очистки газа от пыли, ржавчины, смолистых веществ и других твердых частиц. Качественная очистка газа позволяет повысить герметичность запорных устройств, а также увеличить межремонтное время эксплуатации этих устройств за счет уменьшения износа уплотняющих поверхностей. При этом уменьшается износ и повышается точность работы расходомеров (счетчиков и измерительных диафрагм), особенно чувствительных к эрозии. Правильный выбор фильтров и их квалифицированная эксплуатация являются одним из важнейших мероприятий по обеспечению надежного и безопасного функционирования системы газоснабжения

Классификация газовых фильтров

По направлению движения газа через фильтрующий элемент все фильтры можно разделить на прямоточные и поворотные, по конструктивному исполнению — на линейные и угловые, по материалу корпуса и методу его изготовления — на чугунные (или алюминиевые) литые и стальные сварные.

При разработке и выборе фильтров особенно важен фильтрующий материал, который должен быть химически инертен к газу, обеспечивать требуемую степень очистки и не разрушаться под воздействием рабочей среды и в процессе периодической очистки фильтра.

По фильтрующему материалу серийно выпускаемые фильтры подразделяются на сетчатые и волосяные. В сетчатых используют плетеную металлическую сетку, а в волосяных – кассеты, набитые капроновой нитью (или прессованным конским волосом) и пропитанные висциновым маслом.

Сетчатые фильтры, особенно двухслойные, отличаются повышенной тонкостью и интенсивностью очистки. В процессе эксплуатации, по мере засорения сетки, повышается тонкость фильтрования при одновременном уменьшении пропускной способности фильтра.

У волосяных фильтров, наоборот, в процессе эксплуатации фильтрующая способность снижается за счет уноса частиц фильтрующего материала потоком газа и при периодической очистке встряхиванием.

Для обеспечения достаточной степени очистки газа без уноса твердых частиц и фильтрующего материала скорость газового потока лимитируется и характеризуется максимально допустимым перепадом давления на сетке или кассете фильтра.

Для сетчатых фильтров максимально допустимый перепад давления не должен превышать 5000 Па, для волосяных – 10 000 Па. В фильтре до начала эксплуатации или после очистки и промывки этот перепад должен

составлять для сетчатых фильтров 2000—2500 Па, а для волосяных — 4000—5000 Па. В конструкции фильтров предусмотрены штуцеры для присоединения приборов, с помощью которых определяется величина падения давления на фильтрующем элементе.

После выбора типа фильтра и производителя (по техникоэкономическим показателям), необходимо обратиться к технической документации, предоставляемой производителем в инструкциях или паспортах.

Конкретный типоразмер газового фильтра выбирается по таблицам или монограммам, приведенным в паспортах производителей, исходя из значений условного внутреннего диаметра газопровода, максимального расхода газа, проходящего через фильтр. Сопротивление чистого фильтра зависит от его типоразмера и входного давления.

Пример таблиц подбора для волосяных фильтров со сменными картриджами:

 ΔP_{Φ} – сопротивление чистого фильтра (потери давления в фильтре), мбар;

 P_k – входное давление перед фильтром, бар;

Значения внутри таблицы:

 V_{Φ} – пропускная способность фильтра, нм 3 /час.

FAG-... – тип фильтра;

 $\mathrm{DN} \ldots$ – условный проход D_y , мм (фланцевое соединение).

Таблица 11

FAG-0,5 DN 50

P_k ΔP_{ϕ}	10	25	50	75	100	150	250	500
0,5	75	110	120	120	1	1	_	1
1	90	140	170	170	-	-	_	-
2	110	170	250	250	250	1	_	-
5	I	ı	350	375	500	500	-	ı
10	I	ı	ı	ı	650	700	700	ı
16	1	1	1	1	1	1	1000	1000

Продолжение табл. 11

FAG-1,5 DN 80

P_k ΔP_{ϕ}	10	25	50	75	100	150	250	500
0,5	300	430	650	800	_	_	-	_
1	340	550	750	900	-	_	-	_
2	400	650	950	1100	1300	_	-	_
5	600	900	1300	1600	1900	2200	-	_
10	850	1200	1800	2200	2500	3000	3750	_
16	1000	1400	2200	2800	3200	4000	4500	6000

FAG-2 DN 100

P_k ΔP_{ϕ}	10	25	50	75	100	150	250	500
0,5	600	900	1300	1300	-	ı	-	_
1	700	1100	1500	1700	-	-	_	-
2	850	1300	1900	2200	2200	-	_	-
5	850	1300	2750	3200	3750	4750	_	-
10	1200	1800	3000	3500	5000	6250	8500	_
16	1400	2200	3200	4000	5500	6500	10 000	12 000

FAG-3 DN 150

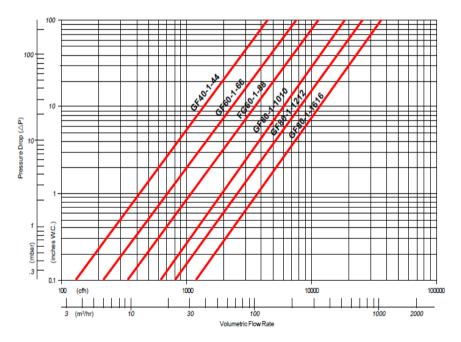
P_k ΔP_{ϕ}	10	25	50	75	100	150	250	500
0,5	1600	2500	3000	3000	_	_	_	_
1	1900	3000	3750	3750	-	-	-	-
2	2500	4000	4500	4750	5500	-	-	-
5	3000	4500	7500	9000	10 000	11 000	-	_
10	3500	5200	8000	10 000	12 000	15 000	18 000	
16	4000	6500	9000	12 000	13 000	16 000	22 000	31 000

Окончание табл. 11

FAG-4 DN 200

P_k ΔP_{ϕ}	10	25	50	75	100	150	250	500
0,5	2250	3400	5000	5000	-	1	1	_
1	2500	4000	5500	7000	-	-	-	_
2	3000	5000	7000	9000	10 000	-	-	_
5	4500	7000	10 000	12 500	15 000	17 500	1	_
10	6500	10 000	15 000	18 000	19 500	22 000	30 000	_
16	8000	12 000	18 000	22 000	25 000	31 000	35 000	50 000

FAG-5 DN 250


P_k ΔP_{ϕ}	10	25	50	75	100	150	250	500
0,5	3500	5500	8000	8000	1	1	1	_
1	3750	7000	11 000	11 000	-	-	-	_
2	6500	8500	12 500	16 000	16 000	-	-	_
5	8500	13 000	17 500	21 000	26 000	32 000	-	_
10	12 000	18 000	27 000	32 000	35 000	40 000	57 000	_
16	14 000	22 000	32 000	40 000	45 000	55 000	65 000	90 000

FAG-6 DN 300

P_k ΔP_{ϕ}	10	25	50	75	100	150	250	500
0,5	6000	9000	11 000	11 500	-	1	1	_
1	7000	10 000	15 000	15 000	_	-	-	-
2	8000	13 000	19 000	23 000	23 000	1	1	
5	1500	20 000	25 000	30 000	35 000	45 000	ı	ı
10	19 000	28 000	42 000	48 000	50 000	60 000	85 000	
16	22 000	35 000	50 000	62 000	70 000	85 000	90 000	130 000

Пример номограммы подбора для фильтров со сменными картриджами, заполненными полиэтиленовыми нитями (резьбовое соединение):

Размер трубы газопровода	Модель фильтра
1/2"	GF40-1-44
3/4"	GF60-1-66
1"	GF60-1-88
11/4"	GF80-101010
1½"	GF80-1-1212
2"	GF80-1-1616

внешняя шкала по оси ординат — ΔP_{ϕ} — сопротивление чистого фильтра (потери давления в фильтре), мбар; внешняя шкала по оси абсцисс — V_{ϕ} — пропускная способность фильтра, м³/час.

Рис. 2. Номограмма определения типоразмера газового фильтра

Если в таблицах или номограммах не указано входное давление P_k перед фильтром (например, в приведенной номограмме), то значения расходов приводятся для рабочих условий. В этом случае для правильного подбора фильтра требуется пересчитать нормальные (иногда называют — стандартными) условия на рабочие. Для этого расход газа, приведенный к нормальным условиям (нм^3 /час) надо разделить на абсолютное давление газа перед фильтром (бар), полученное значение и будет расходом газа при данных рабочих условиях, по которому и определяется типоразмер фильтра.

Если перепад давления на чистом фильтре превышает 25 мбар для сетчатых фильтров или 50 мбар для волосяных, то необходимо скорректировать выбор оптимального типоразмера фильтра (как правило, выбрать следующий в размерном ряду).

5.2. Выбор счетчиков расхода газа.

Счетчик газа — прибор учета, предназначенный для измерения количества (чаще — объема, реже — массы) прошедшего по газопроводу газа. Соответственно, количество газа, как правило, измеряют в кубических метрах (${\rm M}^3$), редко — в единицах массы, килограммах или тоннах (в основном — технологических газов). Приборы, позволяющие измерять или вычислять проходящее количество газа за единицу времени (расход газа), называются расходомерами или расходомерами-счетчиками. Чаще всего расход газа измеряют в кубических метрах в час (${\rm M}^3$ /ч).

Классификация счетчиков газа по принципу действия Барабанный

Используется в основном в лабораторных целях в качестве образцовых средств измерения. При вращении барабана под воздействием давления секции барабана поочередно заполняются газом и, дойдя до выхода, опорожняются (по принципу револьверного). Объем газа, прошедшего через счетчик, пропорционален числу оборотов барабана. Вращение барабана через механическую передачу передается на счетное устройство (циферблат). Диапазоны измерения, в зависимости от типоразмеров, от единиц л/ч до 10–20 м³/ч. Характеризуются высокой точностью измерения, основная погрешность до 0,15–0,2 %.

Вихревой

Используется подсчет периодичности возникновения вихрей вокруг обтекаемого потоком газа тела, частота которых пропорциональна скоро-

сти потока. Для детектирования вихрей используются пьезоэлектрические или термоанемометрические датчики-детекторы. Применяются приборы с диаметрами проточной части от 15–27 до 300 мм, максимальным расходом $Q_{\rm max}$ от 50–70 до 12 000 м³/ч и диапазоном измерения от 1:10 до 1:60 (при давлении среды, близком к атмосферному). С увеличением давления среды максимальный расход и диапазон измерения увеличиваются практически прямо пропорционально давлению. Объем газа вычисляется интегрированием объемного расхода по времени.

Левитапионный

Используется принцип тахометра на газовых подшипниках.

Мембранный (камерный, диафрагменный)

Самый распространенный тип счетчика газа. Первый патент на прибор такого типа был получен в Англии в 1844 году. Счетчик механического типа. Принцип действия основан на перемещении подвижных мембран камер при поступлении газа в прибор. Впуск и выпуск газа вызывает попеременное перемещение мембран и, через комплекс рычагов и редуктор, приводит в действие счетный механизм. Счетчики этого типа применяются для максимальных расходов $Q_{\rm max}$ от 2,5 до $100~{\rm m}^3/{\rm q}$. Эти счетчики отличаются широким диапазоном измерения до 1:100.

Основанный на методе перепада давления на сужающем устройстве

Типы сужающих устройств: диафрагмы, трубы и сопла Вентури, осредняющие трубки Аннубар и Торбар и т. д. При протекании потока через сужающее устройства образуется перепад давления между участками трубопровода до и после устройства. Перепад давления пропорционален квадрату расхода. Измеряется одним (или несколькими, для расширения диапазона измерения) дифференциальным манометром. Объем прошедшего через прибор газа вычисляется интегрированием расхода газа по времени.

Термоанемометрический расходомер

Принцип измерения основан на зависимости теплоотдачи нагретого элемента, помещенного в поток, от скорости течения потока.

Ротационный

Счетчик механического типа. Два ротора располагаются в измерительной камере поперек потока газа. При поступлении газа на вход счетчика оба ротора под его напором начинают вращение. Форма роторов (в сечении напоминающая цифру 8) и сечение измерительной камеры рассчитывается таким образом, чтобы при вращении ротор одним концом описывал профиль поверхности стенки измерительной камеры, а другим концом описывал профиль поверхности второго, вращающегося навстречу ротора. В начальном положении ротора располагаются под углом 90° друг к другу, это взаимное положение фиксируется двумя колесами-синхронизаторами, установленными на осях роторов. Эти же колеса обеспечивают строго синхронное вращение роторов. При вращении оба ротора попеременно

отсекают определенный объем газа (порцию), заключенный между ротором и стенкой измерительной камеры, и перепускают его на выход счетчика. Объем прошедшего через счетчик газа пропорционален количеству порций и, соответственно, пропорционален числу оборотов роторов. Вращение ротора с его оси через механическую передачу (редуктор, магнитная муфта, система шестерен) передается на счетный механизм, в котором происходит накопление количества прошедшего газа. Применяются для максимальных расходов $Q_{\rm max}$ от 10—16 до 650—1000 м 3 /ч (реже — в бытовом секторе для $Q_{\rm max}$ 4—10 м 3 /ч), с шириной диапазона расходов от 1:20 до 1:250.

Струйный

В электронном преобразователе вычисляется количество прошедшего газа через струйный генератор.

Турбинный

Счетчик механического типа. Конструктивно представляет собой отрезок трубы, в проточной части которого последовательно по потоку расположена турбина с валом и подшипниковыми опорами вращения. Газ, проходящий через измерительную камеру счетчика, вращает турбину, скорость вращения которой пропорциональна скорости потока и, соответственно, расходу газа. Вращение турбины через механическую передачу (червяк, редуктор, магнитная муфта, система шестерен) передается на счетный механизм, на котором механически интегрируется по времени и накапливается объем прошедшего газа. Применяются для максимальных расходов $Q_{\rm max}$ от 100 до $10\,000\,{\rm M}^3/{\rm q}$, с шириной диапазона расходов от $1:10\,{\rm дo}$ 1:50.

Ультразвуковой

Ультразвук, пускаемый по ходу движения газа, и ультразвук, пускаемый против хода потока газа, имеют разницу скорости движения, которая пропорциональна скорости движения газа. Сравнивая их, получают скорость потока и, соответственно, расход и объем прошедшего газа. Самые простые и недорогие приборы такого типа небольших диаметров имеют одну пару ультразвуковых излучателей, расположенных друг напротив друга по оси прибора или на противоположных стенках под углом к потоку. Или, как вариант, на одной стенке. В этом случае ультразвуковая волна от одного излучателя отражается от противоположной стенки и попадает на второй, парный. И наоборот, от второго к первому. Более сложные и дорогие приборы больших диаметров имеют несколько пар излучателей, расположенных радиально на стенках прибора под углом к потоку, что позволяет более точно определять среднюю скорость потока по сечению.

После выбора типа счетчика расхода газа и производителя (по технико-экономическим показателям), необходимо обратиться к технической документации, предоставляемой производителем в инструкциях или паспортах.

Конкретный типоразмер счетчика расхода газа, как и газового фильтра, выбирается по таблицам или монограммам, приведенным в паспортах производителей, исходя из значений условного внутреннего диаметра газопровода, максимального и минимального расхода газа, проходящего через счетчик. Сопротивление чистого счетчика расхода зависит от его типоразмера и входного давления.

Примеры таблиц подбора турбинного счетчика расхода газа и определения его сопротивления (перепада давления) приведены в табл. 12 и 13.

Таблина 12

Типо-	Условный	Макси- мальный		иальный расход Q_{\min} , м 3 /ч и диапазон я расхода (Q_{\min} / Q_{\max}) при избыточном давлении $P_{\text{изб}}$, МПа				
размер	проход	расход		исполнение	е «2» и исполн	ение «2У»		
	Ду, мм	У _{тах} , м ³ /ч	$Q_{ m max}$, м $^3/{ m q}$	исполнение «1»		$P_{\rm изб}$		
			W1//	$P_{\text{изб}} < 0,3$	$0,3 \le P_{изб} < 1$	$P_{\scriptscriptstyle H36}\!\ge 1$		
G65	50	100	5 (1/20)		5 (1/20)			
G100	80	160	8 (1/20)		8 (1/20)			
G160	80	250	13 (1/20)	13 (1/20)	5 (1/	50)		
G250	80	400	20 (1/20) 13 (1/30)*	20 (1/20) 13 (1/30)**	8 (1/50)	5 (1/80)		
G250	100	400	20 (1/20)	20 (1/20)	13 (1/30)	8 (1/50)		
G400	100	650	32 (1/20) 20 (1/30)*	32 (1/20) 20 (1/30)**	13 (1/50)	8 (1/80)		
G400	150	650	32 (1/20)	32 (1/20)	20 (1/30)	13 (1/50)		
G650	150	1000	50 (1/20) 32 (1/30)*	50 (1/20) 32 (1/30)**	20 (1/50)	13 (1/80)		
G1000	150	1600	80 (1/20) 50 (1/30)*	80 (1/20) 50 (1/30)**	32 (1/50)	20 (1/80)		
G1000	200	1600	80 (1/20)	80 (1/20)	50 (1/30)	32 (1/50)		
G1600	200	2500	130 (1/20) 80 (1/30)*	130 (1/20) 80 (1/30)**	50 (1/50)	32 (1/80)		
G1600	250	2500	130 (1/20)	130 (1/20)	80 (1/30)	50 (1/50)		
G2500	250	4000	200 (1/20) 130 (1/30)*	200 (1/20) 130 (1/30)**	80 (1/50)	50 (1/80)		
G2500	300	4000	200 (1/20)	200 (1/20)	130 (1/30)	80 (1/50)		
G4000	300	6500	320 (1/20) 200 (1/30)*	320 (1/20) 200 (1/30)**	130 (1/50)	80 (1/80)		

Таблина 13

_	Условный проход	Максимальный	Максимальное
Типоразмер	Ду, мм	перепад давления	рабочее давление
	ду, мм	Па*	P_y , МПа (к Γ с/см ²)
G65	50	1900	1,6 (16)
G100	80	470	1,6 (16) / 10 (100)
G160	80	1050	1,6 (16) / 10 (100)
G250	80	2550	1,6 (16) / 10 (100)
G250	100	1100	1,6 (16) / 10 (100)
G400	100	2800	1,6 (16) / 10 (100)
G400	150	370	1,6 (16) / 10 (100)
G650	150	850	1,6 (16) / 10 (100)
G1000	150	2100	1,6 (16) / 10 (100)
G1000	200	500	1,6 (16)
G1600	200	1200	1,6 (16)
G1600	250	420	1,6 (16) / 6,3 (63)
G2500	250	1050	1,6 (16) / 6,3 (63)
G2500	300	400	1,6 (16) / 6,3 (63)
G4000	300	1000	1,6 (16) / 6,3 (63)

Пример номограммы подбора счетчика расхода газа и определения его сопротивления (перепада давления):

Размер трубы	Модель счетчика	Размер трубы	Модель счетчика
Ду50	G65	Ду200	G1000
Ду80	G100	Ду250	G1600
Ду100	G250	Ду300	G2500
Ду150	G400		

Если в таблицах или номограммах не указано входное давление P_k перед счетчиком расхода (например, в приведенной номограмме), то значения расходов приводятся для рабочих условий. В этом случае для правильного подбора счетчика расхода газа, подобно методике выбора газового фильтра, требуется пересчитать нормальные (иногда называют стандартными) условия на рабочие. Для этого: расход газа, приведенный к нормальным условиям (нм^3 /час)

надо разделить на абсолютное давление газа перед счетчиком расхода (бар), полученное значение и будет расходом газа при данных рабочих условиях, по которому и определяется типоразмер счетчика расхода газа.

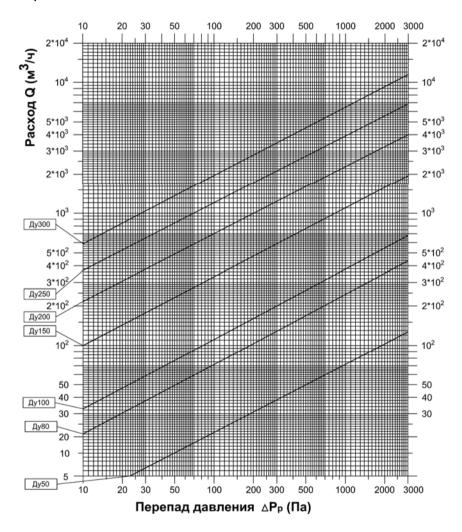


Рис. 3. Номограмма определения сопротивления счетчика расхода газа

Например.

Дано:

Расход газа, приведенный к нормальным условиям, заданный потребителем газа:

$$V_{\text{min}} = 500 \text{ Hm}^3/\text{y};$$

 $V_{\text{max}} = 10 000 \text{ Hm}^3/\text{y}.$

Абсолютное давление газа перед счетчиком расхода:

$$P_k = 5$$
 бар.

Решение:

Рабочие расходы газа:

$$V_{\min}^{p} = V_{\min} / P_k = 500/5 = 100 \text{ HM}^3/\text{H};$$

 $V_{\max}^{p} = V_{\max} / P_k = 10 000/5 = 2000 \text{ HM}^3/\text{H}.$

По таблицам определяем наименьший из подходящих типоразмеров искомого счетчика расхода газа:

Требуемым характеристикам соответствует, например, **G1600**, **Ду200**.

$$P_{\text{изб}} = P_k - 1 = 4 \text{ бар} = 0,4 \text{ МПа};$$

0.3 < 0.4 < 1 МПа — по таблице находим минимальный расход при данных рабочих условиях: $V_{\rm min}^{\rm p} = 50~{\rm m}^3/{\rm q}$.

 $\mathit{Требуемый}$ по заданию минимальный $\mathit{pacxod} - 100~\mathrm{Hm}^3/\mathrm{q} > 50~\mathrm{m}^3/\mathrm{q}$.

То есть выбранный счетчик расхода соответствует не только максимальному расходу, но и минимальному.

Далее – для расчета давления газа перед регулятором давления по таблицам (или номограммам) определяем максимальный перепад давления на выбранном счетчике расхода газа. Он составляет:

$$\Delta P_{\rm th} = 1200 \; \Pi a = 12 \; \text{мбар}.$$

6. Выбор регулятора давления (РД) для газорегуляторного пункта (ГРП)

Регулятор давления — разновидность регулирующей арматуры, автоматически действующее автономное устройство, служащее для поддержания постоянного давления газа в газопроводе. При регулировании давления происходит снижение давления. Это достигается автоматическим изменением степени открытия дросселирующего органа регулятора, вследствие чего автоматически изменяется гидравлическое сопротивление проходящему потоку газа. В зави-

симости от поддерживаемого давления (расположения контролируемой точки в газопроводе) регуляторы давления разделяют на регуляторы «до себя» и «после себя». В ГРП применяют только регуляторы «после себя».

Принцип работы

Автоматический регулятор давления состоит из исполнительного механизма и регулирующего органа. Основной частью исполнительного механизма является чувствительный элемент, который сравнивает сигналы датчика и текущего значения регулируемого давления. Исполнительный механизм преобразует командный сигнал в регулирующее воздействие и в соответствующее перемещение подвижной части регулирующего органа за счет энергии рабочей среды (это может быть энергия газа, проходящего через регулятор, либо энергия среды от внешнего источника – электрическая, сжатого воздуха, гидравлическая). Если перестановочное усилие, развиваемое чувствительным элементом регулятора, достаточно большое, то он сам осуществляет функции управления регулирующим органом. Такие регуляторы называются регуляторами прямого действия. Для достижения необходимой точности регулирования и увеличения перестановочного усилия между чувствительным элементом и регулирующим органом может устанавливаться усилитель – командный прибор (иногда называемый пилотом). Измеритель управляет усилителем, в котором за счет постороннего воздействия (энергии рабочей среды) создается усилие, передающееся на регулирующий орган.

Выбор регуляторов давления газа необходимо производить с учетом следующих факторов:

- тип объекта регулирования;
- максимальный и минимальный требуемый расход газа;
- максимальное и минимальное входное давление;
- максимальное и минимальное выходное давление;
- точность регулирования (максимально допустимое отклонение регулируемого давления и время переходного процесса регулирования);
 - необходимость полной герметичности при закрытии регулятора;
- акустические требования к работе регуляторов с высокими входными давлениями и большими расходами газа.

Основным требованием при подборе регулятора давления является обеспечение устойчивости его работы на всех возможных режимах, что проще всего добиться правильным выбором регулятора для того или иного объекта. Для тупикового газопровода (с отбором газа в конце газопровода) следует применять статические регуляторы прямого действия. В случае больших расходов газа — непрямого действия. Для кольцевых и разветвленных газовых сетей, учитывая их способность к самовыравниванию, в принципе можно использовать любые типы регуляторов, но так как эти сети имеют обычно большие расчетные расходы, то лучше применять астатические регуляторы непрямого действия (с пилотом). Эти регуляторы позволяют более точно поддерживать давление после себя.

Неравномерность регулирования у статических регуляторов давления прямого действия $\pm (0-20)$ %, статических непрямого действия (с пилотом) и астатических $\pm (5-10)$ %.

При подключении к сетям высокого давления, давление в которых имеет значительные колебания, а также учитывая практически существующие конструкции регуляторов, может оказаться, что одноступенчатое снижение давления не применимо. В этом случае следует либо выбирать двухступенчатый регулятор давления, либо применить двухступенчатое редуцирование, при котором первым регулятором давление снижается до промежуточного значения, а вторым – до необходимого с высокой точностью.

При выборе регулятора давления необходимо учитывать явления, связанные с шумом работающего регулятора. Возникновение шумов вызвано газодинамическими колебательными процессами у дроссельных органов и стенок регуляторов. При совпадении частоты колебаний амплитуда колебаний клапана может резко возрасти, что приведет к износу и разрушению клапана, сильной вибрации регулятора. Наиболее эффективный метод снижения амплитуд колебаний — установка гасителя шума (перфорированного патрубка) сразу после редуцирования газа.

Выбор регулятора производят из условия, что его пропускная способность должна быть на 15–20 % больше максимального часового расхода газа потребителем. Это означает, что регулятор будет загружен при максимальном газопотреблении не более, чем на 80 %, а при минимальном – не менее, чем на 10 %. Если это условие не будет выполняться, то при максимальном отборе газа регулирующий орган будет полностью открыт и не сможет выполнять свои функции. Регулирование обеспечивается только тогда, когда регулирующий орган и исполнительный механизм находятся в подвижном состоянии. При снижении отбора газа ниже предельного могут возникнуть автоколебания (пульсации, вибрации) клапана.

В системах газораспределения наиболее распространены следующие типы регуляторов давления (по виду нагрузки): регуляторы прямого действия с пружинной и рычажно-пружинной нагрузками и регуляторы непрямого действия с командным прибором (пилотом).

Регуляторы первой группы. К ним можно отнести регуляторы РДГ-20 и РДСК-50, в которых усилие рабочей мембраны передается непосредственно на клапан, находящийся на штоке и закрепленный в центре мембраны. В целях разгрузки клапана от влияния входного давления используется дополнительная разгрузочная мембрана.

Вторая группа — это беспилотные регуляторы типа РД-32М, РД-50М, РДНК-400. Для них характерно наличие рычажной системы передачи усилия от рабочей мембраны на регулирующий клапан. За счет различия в длинах плеч коленчатого рычага уменьшается сила воздействия входного давления на клапан регулятора. Усилие мембранного привода на клапан при этом увеличивается, что обеспечивает более высокое уплотняющее усилие на клапан. У беспилотных регуляторов первой и второй групп органом настройки регулируемого выходного давления является настоечная пружина, воздействующая на рабочую мембрану.

Ограниченные размеры пружины и мембраны определяют следующие особенности:

- узкий диапазон выходного регулируемого давления, величина которого определяется параметрами настоечной пружины;
- «наклонную» расходную характеристику. Это означает, что с увеличением расхода газа через регулятор от 0 до 100 % выходное давление в определенном соотношении для каждого типа регулятора уменьшается;
 - пропускная способность этих регуляторов невелика.

Третья группа регуляторов — устройства типа РДУК2, РДБК1, РДГ. Их характерная особенность — наличие регулятора управления (пилота). Процесс регулирования определяется взаимодействием выходного давления на рабочую мембрану, силы так называемого управляющего давления, подаваемого из пилота в подмембранное пространство, грузом подвижных частей, силами трений в соединениях.

Газ входного давления поступает в пилот, который поддерживает постоянное давление под рабочей мембраной регулятора. По импульсному трубопроводу газ выходного давления поступает на мембрану. Через дроссель избыток газа после пилота постоянно сбрасывается.

Настройка регуляторов на требуемое выходное давление производится изменением усилия сжатия регулировочной пружины пилота, а также открытием или закрытием проходного сечения регулируемых дросселей. Подмембранная полость пилота сообщена с атмосферой.

Если $P_{\text{вых}}$ уменьшилось, то уменьшится и давление над рабочей мембраной, клапан вместе с мембраной поднимается, расход газа через регулятор увеличивается, $P_{\text{вых}}$ возрастает вновь до заданного значения.

Пилотные регуляторы имеют достаточно широкие интервалы входного и выходного давления и пропускной способности. Эти факторы обеспечиваются воздействием на рабочую мембрану регулятора подмембранного управляющего давления, создаваемого пилотом, вместо непосредственного воздействия настоечной пружины на мембрану.

По сравнению с пружинными регуляторами прямого действия, пилотные имеют следующие преимущества:

- возможность обеспечения достаточно широких интервалов выходного регулируемого давления 0,01–0,06 МПа и 0,06–0,6 МПа;
 - обеспечение достаточно большой пропускной способности;
- возможность в ряде случаев перенастройки регуляторов на рабочие параметры без прекращения подачи газа к потребителям.

Для выбора РД необходимо определить давление газа на входе (после фильтра и счетчика расхода газа), определить давление после РД (после ввода в межцеховой газопровод после ГРП), рассчитать расход газа в целом на объект +(15–20) % для качественного регулирования давления. Эти данные сводятся в таблицу. В случае значительного расхождения в объемах потребления газа в зимний и летний периоды возможна установка двух параллельных РД с близкими диапазонами настройки по регулированию давления и разными пропускными способностями.

Таблица 14

		1,2 MПа	19							70	150	300		150	300		49		
		1,0 1,1 1,2 MTa MTa MTa	18							99		I			ı		I		
										58	125	258		125	258		55		
	ac	0,9 MHa	91					I		52	110	232		110	232		47	ı	
	Д, м³/ч	0,8 MПа	15							46	100	206	1	100	206	1	43		1
РД)	Пропускная способность регулятора при входном давлении, VPД, м³/час	0,7 MITa	14							43	85	174		85	174		37		
() вин	м давле	0,6 MПа	13	9	15,9	39,7	15,5	09	70	40	72	155		72	155		30	105	
Пропускная способность регуляторов давления (РД	и входис	0,5 MHa	12		15,5	38,7	14	25	85	34	62	129		62	129		24	06	
pob ,	ора пр	0,4 MПа	=		13,8	34,5	13	90	46	28	52	76		52	76		21	70	
УЛЯТС	регулят	0,3 MHa			12,4	31,0	11	40	40	18	43	77	124	43	77	124	17	55	100
b per	бность	0,2 MIIa	_		12,2	30,5	6	30	28	13,5	31	99	06	31	9	06	13	40	75
<u> </u> 5ност	я спосо	0,1 MПа	~		12,3	30,7	8	20	18	6	23	35	50	23	35	50	7	25	45
)000	пускна	0,05 MITa			5,6	23,7	4	16	6	4,5	12	23	28	ı	23	28	4	6	23
ная сі	lIpo	0,04 MITa								I		1	ı		I	I		I	ı
туск		0,03 MTla	5															ı	
Про		0,02 MПa			I			I		I		I			I				
		0,01 MПа	3														1,3	4	11
	Диапазон	1	2	2,2	0000	0,0-0,0	0021	1,3–2,0	3000	c,5–0,2		0,9-2,0 2,0-3,5		-	2,0-3,5	0,5-5,6		2,0-2,5	
	Марка	регулятора	-1	РДГБ-6	FE-10	FE-25	РДГК-10	РДГК-10М	РДГД-20М-0,6 с. <i>0</i> 5	РДГД-20М-1,2 с. Ø3	РД-32М	РД-32М седло Ø6	РД-32М седло Ø10	РДУ-32 седло Ø4	РДУ-32 седло Ø6	РДУ-32 седло Ø10	РДНК-32 седло Ø3	РДНК-32 седло Ø6	РДНК-32 г седло Ø10

Продолжение табл. 14

_																							
61				1000						029		5.	1340		1000		1200	2113	617	0059	0000		12442
18				915	000	200				638		720	17/0		920		1100	1785	1/02	2726	5750		11450
17				830						585		-	11/0		860		1000	1630	1050	1005	4993		10528 11450
16		I		750				I		500		000	0001		800		006	1.185	1400	1511	4341		9570
15				999	000) Or				440		000	990		720		850	1330		7007	4000		8614
14				580	0	0(390		00	08/		920		800	1100	1120	2637	2022		7657
13	300	009	006	500			630	1050		335		Ç	0/0		009		750	1032	1032	2170	51/0		0029
12	250	500	700	410	002	/00	540	006		300		002	066		500		009	008	020	177.4	7174		5743
11	200	400	009	330	009	000	450	750		280		ç	076		400		450	277	+	0244	777		4286
10	170	300	450	250	200	200	360	009		225		0.7	450		330			516	240	1916	1010		2836
6	125	180	280	175	300	200	270	450		165		335	ccc		250			150	150	1360	1300		2127
8	80	100	130	100	120	120	180	300		110		000	077		120		-	320	320	000	900		1408
7	45	55	02	55	03	90		I		53		2	901		09			0	0	029	020		1025
9					01	40												010	7	009	000		1000
5					3.0	30		ı		ı			ı		ı			108	170	095	200		925
4					20	20							'		'			183	100	510	510		850
3						_												591	100	051	430		775
2		0 4 0 6	2,0-0,7		2,0-3,5	3,5-5,0	0306	0,0-0,7	50-200	200–300	10–50	50-200	200–300	10-16	16-40	40–100	270–300	1–60	30–600	1–60	30-600	1–60	30-600
1	РДНК-400	РДНК-400М	РДНК-1000	РДНК-У	РДНК-50	РДНК-50П	РДНК-50/400	РДНК-50/1000	РДСК-50/400 с. Ø10	РДСК-50/400Б с. Ø10	PACK- 50/400M c. Ø10	РДСК-50/400 с. Ø14	РДСК-50/400Б с. Ø14	РДСК-50М-1	РДСК-50М-2	РДСК-50М-3	РДСК-50БМ	РДБК 1-50/25	РДБК 1П-50/25	РДБК 1-50/35	РДБК 1П-50/35	РДБК 1-100/50	РДБК 1П- 100/50

Продолжение табл. 14

-	2	3	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19
РДБК 1-100/70	1–60	1550	1700	1850	2000	2050	0 2816	4254	5672	8571	11485	13400	15313	17227	19140	21056	19140 21056 22900 24884	24884
РДБК 1П- 100/70	009−0€	1550	1700	1850	2000	2050	0 2816	4254	5672	8571	11485	13400	15313	17227	19140	21056	22900	24884
РДГ-25H ВПГ 35B	1,5–60					ı	340	510	089		ı	1190			1700		1	2210
P.U23B	000-00					+	1											
РДІ -50Н седло Ø30	1,5–60					250	150	059	050	1	1300	1500	1700	1050	2150	7350	0086 0096 03800	0006
РДГ-50В седло Ø30	009-09			I		I	5			011		0001		0661		2550	7007	70007
РДГ-50Н седло Ø35	1,5–60					330	009	050		1350 1550	1050	2150	0056	0086	3100	3400	2100 2400 2700 4050	4050
РДГ-50В седло Ø35	009-09			I		I	000			0001				7000	3100	3400	3700	4020
РДГ-50Н седло <i>0</i> 40	1,5–60					470	058	1350	1700	2100	0056	2050	2350	3000		0505 0097 0067	0505	6450
РДГ-50В седло Ø40	009-09			I		I	nco .				7200	0067	0000	2000		4600	2020	2420
РДГ-50Н седло <i>0</i> 45	1,5–60					009	1100	1650	0000	0375	0000	3000	4350	4000		0009	0012 0333 0003 0313	7100
РДГ-50В седло <i>0</i> 45	009-09			I		I	IIM									9000	0550	/100
РДГ-80Н	1,5–60			ı		1250	2250	3400	4500	2600	6750	7850	0006	10100	11200	12350	13450	14600
РДГ-80В	009-09					1 1	-+	\dashv	_									
РДГ-150Н	1,5–60			1		2/20	4950	7400	9850	12800	14800	17250	19700	22150	24600	27050	29500	32000
РДГ-150В	009-09					ı	-	+	-+		_	_						
РДП-50Н	0,5-50			1		870	1160	1740	2320	2900	3480	4060	4640	5520	5800	6380	0969	7540
РДП-50В	20-600					1		-	-			200	2				_	
РДП-100Н	0,5-50					3480	0797	0969	0280	11600	13020	16240	18560	20880	23200	25520	27840	30100
РДП-100В	20-600					1			_	11000		_		70000	00707		25/2	20100
РДП-200Н	0,5-50			ı		11620	15480	0 23220		30960 38700	46440	54180	61920	09969	77400		85140 92880	1000
I РДП-200В	20–600			ı		1	1010		_	00/00		_					_	Imm

1	_								
2 3 4 5 6 7 8 9 10 11 12 13 14 60-600 - - 7500 11000 15000 22000 25000 28000 60-600 - - 11000 17000 21000 27000 32000 38000 44000 60-600 - - 7500 11000 15000 18000 25000 28000 60-600 - - 7500 11000 17000 21000 32000 38000 44000	19	03027	062/4	OSCOL	06201	OSCLV	067/4	03002	0620/
2 3 4 5 6 7 8 9 10 11 12 13 14 60-600 - - 7500 11000 15000 22000 25000 28000 60-600 - - 11000 17000 21000 27000 32000 38000 44000 60-600 - - 7500 11000 15000 18000 25000 28000 60-600 - - 7500 11000 17000 21000 32000 38000 44000	18	94000	1	00099	9999	74000	3	0000	0000
2 3 4 5 6 7 8 9 10 11 12 13 14 60-600 - - 7500 11000 15000 22000 25000 28000 60-600 - - 11000 17000 21000 27000 32000 38000 44000 60-600 - - 7500 11000 15000 18000 25000 28000 60-600 - - 7500 11000 17000 21000 32000 38000 44000	17	0000	9000	0000	0000	0000	0000	0000	0000
2 3 4 5 6 7 8 9 10 11 12 13 14 60,5-60 - - 7500 11000 15000 18000 22000 28000 60-600 - - 11000 17000 21000 27000 32000 38000 44000 60-600 - - 7500 11000 15000 18000 22000 28000 60-600 - - 7500 11000 15000 18000 22000 28000 60-600 - - - - - 11000 17000 21000 22000 33000 44000	16	000%	omoc	24000	2400	00038	20000	24000	24000
2 3 4 5 6 7 8 9 10 11 12 13 14 60,5-60 - - 7500 11000 15000 18000 22000 28000 60-600 - - 11000 17000 21000 27000 32000 38000 44000 60-600 - - 7500 11000 15000 18000 22000 28000 60-600 - - 7500 11000 15000 18000 22000 28000 60-600 - - - - - 11000 17000 21000 22000 33000 44000	15	00000	22000	0002	mmc	33000	23000	00002	mmc
2 3 4 5 6 7 8 9 10 11 12 60-600 - - - 7500 11000 15000 18000 22000 60-600 - - - 11000 17000 21000 27000 32000 60-600 - - - 7500 11000 15000 18000 22000 60-600 - - - - - - - 2000 60-600 -	14			44000	900	00000	70000	44000	000
2 3 4 5 6 7 8 9 10 11 12 60-600 - - - 7500 11000 15000 18000 22000 60-600 - - - 11000 17000 21000 27000 32000 60-600 - - - 7500 11000 15000 18000 22000 60-600 - - - - - - - 2000 60-600 -	13			30000	00000			00002	00000
60-600 60-600 60-600 60-600 60-600 60-600 60-600 60-600 60-600	12	000	00077	00000	00076	00000	00077	0000	00076
60-600 60-600 60-600 60-600 60-600 60-600 60-600 60-600 60-600	11	000	0000	00026		0000	00001	0002	000/7
60-600 60-600 60-600 60-600 60-600 60-600 60-600 60-600 60-600	10	0021	noci	,	0001	0003	0000	,	00013
60-600 60-600 60-600 60-600 60-600 60-600 60-600 60-600 60-600		000	0001	0002	000/	10001	0001	000	000/
60-600 60-600 60-600 60-600 60-600 60-600 60-600 60-600 60-600	-			000	<u> </u>			000	<u> </u>
60-600 60-600 60-600 60-600 60-600 60-600 60-600 60-600									
2 3 0,5-60 60-600 0,5-60 60-600 60-600 0,5-60			1		I		ı		I
2 3 0,5-60 60-600 0,5-60 60-600 60-600 0,5-60	9								
2 3 0,5-60 60-600 0,5-60 60-600 60-600 0,5-60	5								
2 3 0,5-60 60-600 0,5-60 60-600 60-600 0,5-60	4		ı		I		I		I
PJIBK 1- 200/105 PJIBK 11- 200/105 PJIBK 11- 200/105 PJIBK 11- 200/140 PJIBK 11- 200/105H PJIYK 2- 200/105B	2	0,5-60	009-09	0,5-60	009-09	0,5-60	009-09	0,5-60	009-09
	1	РДБК 1- 200/105	РДБК 1П- 200/105	РДБК 1- 200/140	РДБК 1П- 200/140	РДУК 2- 200/105H	РДУК 2- 200/105В	РДУК 2- 200/140H	РДУК 2- 200/140В

Значения давления на входе в РД, указанные в таблице, приведены для $P_{\rm us6}$ в МПа.

Значения давления на выходе после РД, указанные в таблице, приведены для $P_{
m m6}$ в кПа.

Пропускная способность указана для данных рабочих условий в м³/час. Для пересчета расхода газа, исходя из требуемого для объекта газопотребления, при нормальных условиях, в первом приближении можно использовать методику, описанную для газовых фильтров и счетчиков расхода газа (см. выше).

Пропускная способность указана для природного газа, имеющего плотность при нормальных условиях $ho_0 =$ значения пропускной способности необходимо его умножить на отношение ρ_0 / ρ_r , где ρ_r – плотность расчетно-0,73 кг/нм³. В случае, если расчет ведется для горючего газа, имеющего другую плотность, для корректировки го горючего газа.

7. Определение наименьшего требуемого давления газа на вводе $P_{\rm H.\,min}$

Поставщик газа на предприятие в результате расширения сети потребителей, а так же в целях экономии эксплуатационных расходов может обратиться к потребителю для уточнения минимально допустимого давления газа на вводе газовой линии. С целью недопустимости снижения давления поставщиком ниже требуемого, необходимо оповестить поставщика о величине наименьшего, требуемого для безотказной работы предприятия, давления газа на вводе $P_{\rm H.\,min}$.

Для определения $P_{\text{H, min}}$ можно воспользоваться следующей метоликой:

- 1. Определяется P_2 давление газа после заводского ГРП (см. выше).
- 2. Определяется давление газа непосредственно после РД, установленного на ГРП:

$$P_2' = P_2 + \Delta P_{\Pi 3K}.$$

3. Определяется наименьшее рабочее давление до РД, установленного на ГРП:

$$P_1 \ge (1,5-1,6)P_2'$$
.

4. Определяется наименьшее рабочее давление в конце участка ввода:

$$P_{\rm K, min} = P_1 + \sum \Delta P_{\rm cq}$$

5. Определяется наименьшее требуемое давление на вводе:

$$P_{\rm H, \, min} = \left(\sqrt{P_{\rm K, \, min}^2 + \frac{A \cdot L_{\rm IIP}}{1000}} + \sum \Delta P_{\rm \phi} + \sum \Delta P_{\rm cu} + \sum \Delta P_{\rm T3K} \right) \cdot 1, 2,$$

где A — ранее рассчитанный коэффициент в соответствии с видом газа;

 $L_{\rm np}$ — ранее рассчитанная приведенная длина участка от ввода до ГРП;

 $\sum \Delta P_{\Phi}$, $\sum \Delta P_{\text{сч}}$, $\sum \Delta P_{\text{ТЗК}}$ — ранее рассчитанные соответствующие падения давления на фильтрах, счетчиках расхода газа и ПЗК, установленных на участках;

1,2 – минимальный коэффициент запаса по давлению на вводе.

Исходные данные для расчета заводского газопровода (вариант 1-16)

16	3,8	1,6	40	700	100	170	100	160	06	20	170	200	2	-	2	3	1	4
15	4,7	1,4	50	009	100	110	170	150	85	120	160	150	1	1	2	I	2	2
14	2,7	1,0	009	500	200	180	160	140	80	110	140	200	ı	2	-	2	1	2
13	3,6	6,0	70	400	100	50	150	130	75	100	120	100	3	Ι	2	1	2	2
12	2,6	1,9	80	300	200	220	140	120	20	06	100	150	ı	1	ı	3	1	3
11	3,4	1,7	900	200	100	150	130	110	99	08	20	100	2	2	1	ı	2	3
10	2,4	1,6	100 100	0 5	001	200	120	100	09	75	30	200	_	1	1	2	_	3
6	1,4	1,5	900	200	100	06	100	06	25	70	40	300	1	1	2	_	1	2
8	4,5	2,5	80	300	200	180	190	80	20	99	20	350	_	2	-	3	2	2
7	1,6	1,3	70	400	100	70	180	70	45	09	09	400	1	_	2	1	2	3
9	3,7	2,4	009	500	200	160	170	09	40	25	70	350	2	1	-	2	1	2
5	2,8	2,3	50	009	100	80	160	20	35	20	80	300	_	2	1	_	1	-
4	3,3	1,2	400	700	200	140	150	40	30	45	06	250	2	1	2	3	_	2
3	5,4	3,3	300	800	100	09	140	30	25	40	100	200	1	2	1	1	2	_
2	3,1	1,1	20	900	200	120	130	20	20	35	110	150	ı	1	-	2	1	2
1	2,6	1,8	100	99	0 5	40	120	10	15	30	120	100	1	Ι	2	1	2	_
	ıза на _{1М} ³	газа нужды,	\mathbf{B}_1 \mathbf{B}_2	\mathbf{B}_3	\mathbf{B}_4	\mathbf{B}_{5}	I	П	H	IV	Λ	до ГРП	Ι	П	Ш	IV	Λ	до ГРП
№ по списку	Годовой расход газа на отопление, 10^6 нм ³	Годовой расход газа на коммун /бытовые нужды, $10^6 \mathrm{Hm}^3$	Производственный	максимальный	часовои расход газа	зимои, нм /час			T CONTRO CONTRA CONTRACT	длина участка, м				Vermon	NOIMACTBO	поворогов	ONI OBL 6 BH	

							_						+0,2B ₅
16	Ţ	1	1	1	2	4	6,0	280	Д	1	1	1	$0^{\circ}2B^{5}+0^{\circ}5B^{3}+$
15	1	I	1	1	2	5	8,0	09	X	_	1	1	$0.3B_1 + 0.2B_2 + 0.2B_3$
14	1	1	_	1	1	2	1,4	220	Ш	1	1	1	$0.2B_3 + 0.5B_4 + 0.1B_5$
13	1	_	1	1	2	4	1,5	180	Д	-	1	1	0,8B4+0,2B5
12	1	1	-	1	1	5	1,6	140	K	_	1	1	0'1B ¹ +0'1B ² +
11	1	-	1	1	2	5	1,1	200	Ш	_	1	1	0,1B ₂ +0,6B ₃ + +0,7B ₅
10	_	_	ı	_	1	5	1,3	110	Д	-	1	1	$0.2B_1 + 0.2B_2 + 0.4B_5$
6	1	ı	1	1	2	4	8,0	50	К	-	1	1	0,8B ₂ +0,1B ₅
8	1	1	-	1	1	5	0,7	09	Ш	_	1	1	0'9B ⁵ +0'5B ²
7	1	Ι	1	1	2	2	6,0	06	Д	1	1	1	$0.2B_3 + 0.2B_4 + 0.3B_5 + 0.3B_5$
9	_	_	ı	_	1	5	1,4	150	X	-	1	1	0,5B ₁ +0,1B ₄ +
5	1	ı	1	1	2	4	8,0	100	П		1	1	0'4B ⁵ +0'3B ²
4	1	Ţ	ı	1	1	5	9,0	80	Д		1	1	0'1B ¹ +0'1B ² +
3	_	ı	Ţ	_	2	5	6,0	160	K	-	1	1	0,2B ₁ +0,3B ₃ +
2	1	1	ı	1	1	5	1,2	180	Ш		1	1	0,1B ₂ +0,4B ₂ +
1	_	ı	1	1	2	4	1,0	200	Д	-	1	1	0,2B ₂ +0,3B ₃ +
	Ι	IV	Λ	до ГРП	Λ	до ГРП	э, бар	го цеха,	(кинэ)	до ГРП	до ГРП	до ГРП	
№ по списку	17.	NOJINYECTBO	конденсатоотводов	na y sacinc	Количество	задвижек на участке	Давление на вводе $P_{\scriptscriptstyle \mathrm{H}}$, бар	Давление у последнего цеха, мбар	Вид газа (месторождения)	Количество фильтров	Предохранительный клапан	Счетчик расхода газа	Летняя нагрузка (май—август)

Примечание. Д – природный газ, месторождение Дашава (типа LL), $\rho_0 = 0.73 \; \text{кг/нм}^3$; $Q_{\text{H}}^{\ \ \ \ \ } = 32,4 \; \text{МДж/нм}^3$ III – природный газ, месторождение Шебелинка (типа E), $\rho_0 = 0.79 \; \text{кг/нм}^3$; $Q_{\text{H}} = 37,4 \; \text{МДж/нм}^3$ К – коксовый газ, $\rho_0 = 0.5 \; \text{кг/нм}^3$; $Q_{\text{H}} = 17,5 \; \text{МДж/нм}^3$.

Таблица 16

Исходные данные для расчета заводского газопровода (вариант 17–32)

F		1									_	_	_	_	_		_		_	_	_
	32	3,1		2,0	40	009	700	100	7	23	280	20	25	130	300	3	1	I	I	2	9
	31	2,2		1,3	20	500	009	100	S	70	240	15	20	160	150	1	1	7	I	2	7
-	30	1,0		1,4	09	009	500	200	100	09	230	09	06	140	200	-	2	ı	2	1	2
	29	2,9		1,5	20	700	400	100	40	50	220	90	08	120	100	3	ı	2	Į	2	2
-	28	3,8		1,6	80	800	300	200	30	40	210	40	190	100	150	ı	1	ı	3	1	3
-	27	5,1		1,7	06	120	200	100	28	30	200	30	20	120	100	2	2	_	ı	2	3
-	26	6,2		1,8	100	140	100	200	26	20	190	20	25	140	200	I	1	1	2	I	3
	25	1,2		1,0	06	90	200	100	24	100	180	20	30	180	300	1	1	2	ı	1	2
	24	3,9		1,9	80	80	300	200	18	190	170	40	125	160	350	ı	2	ı	3	2	2
-	23	1,8		2,9	20	70	400	100	8	180	160	30	240	140	400	1	I	7	1	2	3
-	22	2,8		2,8	09	09	500	200	22	170	150	20	250	120	350	2	1	ı	2	1	2
-	21	1,9		2,7	50	30	009	100	20	160	140	90	09	100	300	ı	2	1	ı	1	1
-	20	1,7		2,6	40	40	700	200	17	150	130	40	20	120	250	2	_	2	3	1	2
=	19	2,6		2,5	30	30	800	100	15	140	120	30	08	10	200	1	2	1	1	2	1
-	18	1,6		2,4	20	120	290	200	12	130	110	20	06	40	150	ı	1	ı	2	1	2
-	17	1,5		2,3	10	100	400	100	10	120	100	15	30	15	100	1	ı	2	1	2	1
		за на М ³	asa	нужды,	\mathbf{B}_{1}	\mathbf{B}_2	B ₃	\mathbf{B}_4	B ₅	I	Π	Ш	IV	Λ	до ГРП	I	Π	Ш	IV	Λ	до ГРП
	№ по списку	Годовой расход газа на отопление, 10^6 нм 3	Годовой расход газа	на коммун./бытовые нужды, $10^6 {\rm Hm}^3$	Z	производственный	максимальный	часовои расход газа	зимои, нм /час			П	Длина у частка, м				I/O ministerior	поподатов	Ha vinactica	na y actino	

7 8 9 10 11 12 13 14 15 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 - 1 - 1 - 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 2 1 2 1 2 1 2 2 2	5 5 4 5 5 5 4 5 5 4	0,9 0,8 0,7 0,6 1,5 1,3 1,1 1,7 0,9 0,8	100 90 60 50 140 160 180 200 70 80	III K A III K A III K A III	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	0,8B ₄ +0,2B ₅ 1,1B ₁ +0,1B ₅ 1,1B ₂ +0,6B ₃ + 1,2B ₁ +0,6B ₃ + 1,2B ₁ +0,2B ₂ + 1,2B ₂ +0,1B ₅ 1,2B ₂ +0,1B ₅ 1,2B ₃ +0,2B ₅ + 1,2B ₃ +0,2B ₅ +
14	<u>-</u>		Ī	_	1	1	5	1,7		X	1	1	1	$0.2B_3 + 0.5B_4 +$
-	-	1	1	1	1	2	4	1,1		Ш	1	1	1	0,8B ₄ +0,2B ₅
-	+		-	I	1	1	5			Д	1	1	1	$0'1B^1+0'1B^3+$
-	-	-	1	1	1	2	5	1	, ,	K	1	1	1	$0'1B^{5}+0'0B^{3}+$
10	- 1		_	I	1	1	5			П	1	1	1	$0.2B_1 + 0.2B_2 +$
0	-	-	1	_	1	2	4			Д	1	1	1	
~	o -		-	Ι	1	1	5			K	1	1	1	0'9B ⁵ +0'5B ²
7	- -	1	1	1	1	2	5			田	1	1	1	$+0.2B_5$ $+0.2B_4$ $+0.3B_5$
9	-	-	_	I	1	П	5	2,0	220	Д	1	1	1	0,5B1+0,1B4+
V	-	1	1	1	1	2	4	1,8	280	K	1	1	1	+0,1B ₅
4	+ -	-	-	_	1	1	2	1,6	260	П	1	1	1	$0'1B^{1}+0'1B^{\dagger}+$
٣) -	-	1	1	1	2	5	1,4	270	Д	1	1	1	0,2B ₁ +0,3B ₃ + +0,4B ₅
c	1 -	-	-	_	1	1	2	1,2	290	К	1	1	1	$0.1B_2 + 0.4B_2 + 0.3B_5$
-		-	1	1	1	2	4	1,0	210	田	1	1	1	$0.2B_2 + 0.3B_3 + 0.3B_5$
	-	1/1	ΙΛ	Λ	ПЧП од	Λ	ПЧЛ од	$P_{\text{\tiny H}}$, 6ap	эго цеха,	(кинар	до ГРП	ПРП од	ПРП од	
No no chacks	JAZ IIO CIINCKY	Количество	конленсатоотволов	TOTOGICAL STREET	na y tacino	Количество	задвижек на участке	Давление на вводе $P_{\scriptscriptstyle \rm H}$, бар	Давление у последнего цеха, мбар	Вид газа (месторождения	Количество фильтров	Предохранительный клапан	Счетчик расхода газа	Летняя нагрузка (май–август)

Примечание. Д – природный газ, месторождение Дашава (типа LL), $\rho_0 = 0.73 \; \text{кг/нм}^3$; $Q_{\text{H}}^{\ \ \ \ \ } = 32,4 \; \text{МДж/нм}^3$ III – природный газ, месторождение Шебелинка (типа E), $\rho_0 = 0.79 \; \text{кг/нм}^3$; $Q_{\text{H}} = 37,4 \; \text{МДж/нм}^3$ К – коксовый газ, $\rho_0 = 0.5 \; \text{кг/нм}^3$; $Q_{\text{H}} = 17,5 \; \text{МДж/нм}^3$.

Задание на графическую часть курсовой работы

- 1. Начертить ситуационный план газовой сети (в масштабе, формат A1) в соответствии с индивидуальным заданием с указанием всех данных и найденных в результате расчетов величин (длины участков, расходы потребителей, путевые расходы, диаметры участков газопровода; значения давления: на вводе, перед ГРП, после ГРП, у конечного потребителя);
- 2. Начертить схему (формат A2) газорегуляторного пункта (ГРП) с указанием наименования и основных характеристик выбранных газовых фильтров, счетчиков расхода газа, регуляторов давления, значений давления в расчетных точках и диаметров патрубков ввода-вывода.

Дополнительное задание к курсовой работе

В наиболее удаленном от центрального ГРП пятом цехе установлен единственный пламенный теплогенератор, к которому требуется подобрать оптимальное газогорелочное устройство. Для этого необходимо рассчитать требуемую максимальную мощность газогорелочного устройства в зависимости от известной мощности пламенного теплогенератора (по данному расходу и виду газа) и его коэффициента полезного действия (КПД). Кроме того, следует соотнести мощность дутьевого вентилятора с аэродинамическим сопротивлением топки пламенного теплогенератора и длину пламенной трубы газовой горелки с толщиной фронтальной стенки теплогенератора или горелочного камня.

Следующим шагом в оптимальном проектном решении является выбор типоразмера обвязочного газопровода, основным элементом которого является блок газовых клапанов. Этот выбор будет зависеть от динамического давления газа в подводимом к горелке газопроводе. Возможна и обратная задача, когда подводимое давление газа можно выставить в предустановленном ГРП, а типоразмер блока газовых клапанов выбрать исходя из экономических соображений.

Также требуется определить мощность нижней ступени горелки в зависимости от минимальной (летней) нагрузки теплогенератора.

Графики рабочих зон газовых горелок, их технические характеристики, а также графики выбора оптимальных типоразмеров обвя-

зочных газопроводов (газовых рамп) предоставлены для данного методического пособия заводом по изготовлению газовых и жидкотопливных горелок GIERSCH компании Enertech GmbH, Германия.

В начале расчетно-пояснительной записки к выполнению данного задания приводятся исходные данные и список пунктов задания. В конце дается заключение по выполненной работе.

Дополнительные задания к курсовой работе представлены вариантами, соответствующими номеру студента в журнале или ведомости.

1. Определение требуемой максимальной мощности горелки.

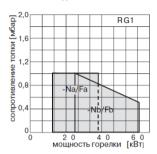
Для определения требуемой максимальной мощности газовой горелки необходимо максимальную (номинальную) мощность данного пламенного теплогенератора (например, котла) разделить на его КПД. Обе эти характеристики указываются производителем теплогенератора в его техническом паспорте или инструкции.

$$N_{\Gamma} = N_{\rm K} / \eta_{\rm K}$$
, $\kappa B_{\rm T}$,

где N_{Γ} – требуемая максимальная мощность горелки, кВт;

 $N_{\rm K}$ — максимальная (номинальная) мощность теплогенератора, кВт; $\eta_{\rm K}$ — коэффициент полезного действия (КПД) пламенного теплогенератора.

2. Выбор типоразмера горелки.


Для выбора типоразмера горелки необходимо на графике рабочей зоны горелки найти точку пересечения изолини: рассчитанной требуемой максимальной мощности горелки (по оси абсцисс) и аэродинамического сопротивления топки заданного пламенного теплогенератора (указывается производителем теплогенератора в его техническом паспорте или инструкции). В случае, если найденная точка пересечения окажется в пределах рабочей зоны — выбранная горелка соответствует данному теплогенератору. Если же найденная точка окажется вне рабочей зоны, даже если мощность горелки соответствует требуемой максимальной мощности, — требуется более мощный вентилятор для подачи воздуха на горение. Тогда необходимо проверить рабочую зону более мощной горелки следующего типоразмера.

№ по списку	-	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	3	4	v	9	7	∞	6	10	11	12	13	14	15	16
КПД пламенного теплогенератора	0,91	0,91 0,92 0,96 0,90 0,93 0,91 0,92 0,93 0,94 0,90 0,91 0,92 0,93 0,90 0,91 0,92	96,0	06,0	0,93	0,91	0,92	0,93	0,94	06,0	0,91	0,92	0,93	06,0	0,91	0,92
Аэродинамическое сопротивление топки, мбар2,14,03,22,83,14,03,05,056,03,89,04,210,046,0	2,1	4,0	3,2	2,8	3,1	4,0	3,0	5,0	5	6,0	3,8	9,0	4,2	10,0	4	6,0
Толщина горелочного камня (фронтальной стенки), мм	280 280 210 320 290 270 260 440 210 290 370 470 200 270 220 290	280	210	320	290	270	260	440	210	290	370	470	200	270	220	290

№ по списку	17	18	19	20	21	22	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	24	25	26	27	28	29	30	31	32
КПД пламенного теплогенератора	96,0	96,0	96,0	06,0	0,93	0,91	0,96 0,95 0,96 0,90 0,93 0,91 0,96 0,96 0,94 0,90 0,91 0,92 0,93 0,90 0,96 0,96	96'0	0,94	06,0	0,91	0,92	0,93	06,0	96'0	96'0
Аэродинамическое сопротивление топки, мбар	2,1 2,0 2,2 1,8 2,1 2,0 1,0 1,6 2,5 2,2 2,8 2,0 3,2 6,0 1,4 1,0	2,0	2,2	1,8	2,1	2,0	1,0	1,6	2,5	2,2	2,8	2,0	3,2	6,0	1,4	1,0
Толщина горелочного камня (фронтальной стенки), мм	280 280 210 320 290 270 260 440 210 290 370 470 200 270 220 290	280	210	320	290	270	260	440	210	290	370	470	200	270	220	290

RG1 12 - 61 κBτ

Технические данные:

Мощность горелки

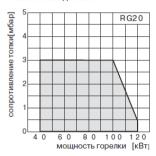
* c KE10 1/2"

со смесительным устройством Na/Fa 12 - 40 кВт со смесительным устройством Nb/Fb 25 - 61 кВт Входное давление газа макс. 300 мбар * Динам. входное давление 20 - 100 мбар * Электр. подключение 10A 1/N/PE ~ 50 Hz 220 - 240 V

Макс. потребляемый ток 1,9А

 Электродвигатель
 90 Вт

 идент. N° продукта
 RG1
 CE-0085AP 0362


 идент. N° продукта
 RG1-L
 CE-0085AP 0363

70 мбар макс.

Рабочие зоны проверены согласно DIN EN 676 и действительны для высоты 200 метров над уровнем моря при температуре в помещении 20°C.

RG20 40 - 120 кВт

Технические данные:

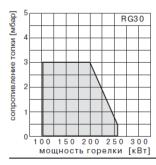
 Мощность горелки
 40 - 120 кВт*

 Входное давление газа макс.
 300 мбар *

 Динам. входное давление
 20 - 100 мбар *

Электр. подключение 10A 1/N/PE ~ 50 Hz 220 - 240 V

Макс. потребляемый ток 2,6 А


Электродвигатель 180 Вт идент. **N**° продукта. CE-0085AP 0364

* с КЕ10 1/2" 70 кВт макс. 70 мбар макс.

Рабочие зоны проверены согласно DIN EN 676 и действительны для высоты 200 метров над уровнем моря при температуре в помещении 20°C.

RG30 105 - 260 кВт

Технические данные:

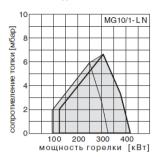
 Мощность горелки
 105 - 260 кВт

 Входное давление газа макс.
 300 мбар

 Динам. входное давление
 100 мбар

Электр. подлючение 10A 1/N/PE ~ 50 Hz 220 - 240 V

 Макс. потребляемый ток
 3,6 A


 Электродвигатель
 250 BT

 идент. N° продукта.
 CE-0085AP 0365

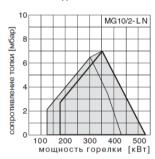
Рабочие зоны проверены согласно DIN EN 676 и действительны для высоты 200 метров над уровнем моря при температуре в помещении 20°C.

MG10/1-LN 95 - 420 κBτ

Технические данные:

Мощность горелки 95 - 420 кВт

> положение смесит. головки "auf" положение смесит. головки "zu"


Электр. подключение 10A 1/N/PE ~ 50 Hz 220 - 240 V Макс, потребляемый ток 3.0 A

0.37 кВт Электродвигатель CE-0085BN0587 Идент. № продукта Динам. входное давление 20 - 300 мбар

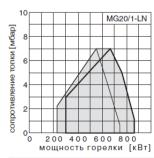
Рабочие зоны проверены согласно DIN EN 676 и действительны для 15°C и 1013 мбар.

MG10/2-LN 125 - 530 κBτ

Технические данные:

Мощность горелки 125 - 530 кВт

> положение смесит, головки "auf" положение смесит. головки "zu"


Электр. подключение 10А 1/N/PE ~ 50 Hz 220 - 240 V

Макс. потребляемый ток 3,0 A 0,75 кВт Электродвигатель CE-0085BN0587 Идент. № продукта Динам. входное давление 20 - 300 мбар

Рабочие зоны проверены согласно DIN EN 676 и действительны для 15°C и 1013 мбар.

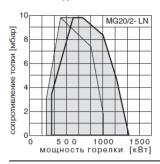
MG20/1-LN 225 - 860 κBτ

Технические данные:

225 - 860 kBT Мощность горелки

> положение смесит, головки "auf" положение смесит, головки "zu"

Электр. подключение 10А 3/N/PE ~ 50 Hz 400 V


Макс, потребляемый ток 3.3 A Электродвигатель 1.1 кВт

Идент. № продукта CE-0085BQ0116 Динам, входное давление 20 - 300 мбар

Рабочие зоны проверены согласно DIN EN 676 и действительны для 15°С и 1013 мбар.

MG20/2-LN 225- 1350 κBτ

Технические данные:

Мощность горелки 225 - 1.350 кВт

положение смесит. головки "auf"

Электр. подключение 10A 3/N/PE ~ 50 Hz 400 V

Макс. потребляемый ток 6,5 А Электродвигатель 2,20 кВт Идент. № продукта СЕ-0085ВN0587 Динам. входное давление 20 - 300 мбар

Рабочие зоны проверены согласно DIN EN 676 и действительны для 15°C и 1013 мбар.

MG3.2 530 - 2100 κBτ

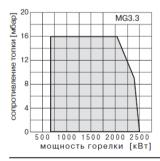
Технические данные:

 Мощность горелки
 530 - 2.100 кВт

 Электр. подключение 10A
 3/N/PE ~ 50 Hz 400 V

 Макс. потребляемый ток
 3,6 A

 Электродвигатель
 4,0 кВт

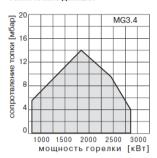

 Идент. N' продукта
 CE-0085AS 0369

 Динам. входное давление
 макс. 300 мбар

Рабочие зоны проверены согласно DIN EN 676 и действительны для 15°C и 1013 мбар.

MG3.3 640 - 2500 κBτ

Технические данные:



Мощность горелки 640 - 2.500 кВт Электр. подключение 10A 3/N/PE ~ 50 Hz 400 V

Макс. потребляемый ток 3,6 А
Электродвигатель 4,5 кВт
Идент. № продукта СЕ-0085АS 0569
Динам. входное давление макс. 300 мбар

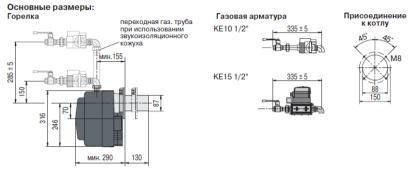
Рабочие зоны проверены согласно DIN EN 676 и действительны для 15°C и 1013 мбар.

Технические данные:

Мощность горелки 790 - 2.800 кВт Электр. подключение 10А 3/N/PE ~ 50 Hz 400 V Макс. потребляемый ток 3,6 А Электровигатель 5,5 кВт

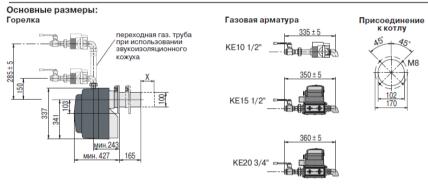
 Электродвигатель
 5,5 кВт

 Идент. № продукта
 CE-0085AS 0369

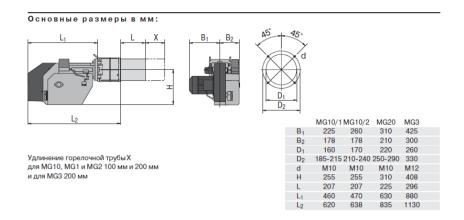

 Динам. входное давление
 макс. 300 мбар

Рабочие зоны проверены согласно DIN EN 676 и действительны для 15°C и 1013 мбар.

3. Определение длины пламенной (горелочной) трубы горелки.


Пламенная (горелочная) труба горелки – узел, представляющий собой пустотелый цилиндр из жаропрочной легированной стали (например, 12Х18Н8Т), в котором смонтировано смесительное устройство для создания однородного газовоздушного динамического потока, поступающего в камеру сгорания (топку) для качественного розжига и полного сгорания. Пламенная труба вставляется в специальное отверстие на фронтальной дверце пламенного теплогенератора или горелочного камня. Длина пламенной трубы должна быть не менее толщины фронтальной стенки пламенного теплогенератора или горелочного камня. Минимальная длина пламенной трубы (или номинальный диапазон длины) указывается производителем теплогенератора в его техническом паспорте или инструкции. В случае отсутствия такой характеристики в паспорте теплогенератора, под минимальной длиной пламенной трубы горелки следует понимать толщину фронтальной стенки пламенного теплогенератора или горелочного камня, которые представлены на обязательных чертежах в техническом паспорте пламенного теплогенератора. Стандартная длина пламенной трубы горелки указывается на кратких эскизах горелки, приведенных в технических паспортах, пособиях для проектировщиков, каталогах и т. п. В случае, если стандартной длины пламенной трубы не достаточно, то необходимо выбрать специальное исполнение горелки с удлиненной пламенной трубой. Возможные варианты удлинения пламенной трубы также указываются на приведенных эскизах горелок (обычно пламенная труба может предлагаться с удлинением на 100, 200 или 300 мм).

RG1 12 - 61 кВт


Удлинение горелочной трубы для горелок RG1 не производится. Удлинение горелочной трубы для горелок RG20 и RG30: x = 100 мм.

RG20 40 - 120 кВт

RG30 105 - 260 кВт

4. Выбор оптимального типоразмера обвязочного газопровода (газового блока) горелки.

Размер газового блока зависит от мощности горелки, входного динамического давления подводимого к горелке газа и вида газа (плотности и теплоты сгорания). Потери давления складываются из давления сопла, сопротивлений блока газовых клапанов, фильтра, шарового крана и соединительных патрубков.

Для обеспечения требуемой мощности входное динамическое давление газа должно быть не меньше суммы потерь давления в газовой линии и сопротивления топочной камеры пламенного теплогенератора.

Возможны два варианта задачи выбора газового блока: прямая и обратная. Прямая задача, когда требуется определить типоразмер газового блока при исходном подводимом динамическом давлении газа для заданного теплогенератора (с известным аэродинамическим сопротивлением топки). Обратная задача, когда подводимое давление газа можно выставить в предустановленном ГРП, а типоразмер блока газовых клапанов выбрать исходя из экономических соображений. Ниже представлены примеры прямой и обратной задачи.

Следует отметить, что чем больше газовый блок, тем меньше его сопротивление. Однако, чем больше газовый блок, тем он и дороже. Поэтому, исходя из технико-экономического подхода к решению задачи оптимального выбора газового блока, обычно предлагается

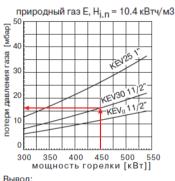

подходящий блок меньшего размера. Например, в примере 1: с точки зрения технического соответствия решению поставленной задачи, подходит два типоразмера газовых блоков: KEV30 1 ½" и KEV_{II} $1\frac{1}{2}$ ". Однако, газовый блок KEV_{II} $1\frac{1}{2}$ " имеет большую стоимость. Таким образом, с технико-экономической точки зрения оптимальным принят газовый блок KEV30 1 ½".

Пример 1:

Мощность горелки: 450 кВт Сопротивление котла: 2 мбар природный газ Е (Н) Вид газа: Входное давление: 20 мбар

Какой газовый блок необходимо выбрать?

20 мбар входное давление -сопротивление котла 2 мбар **18** мбар

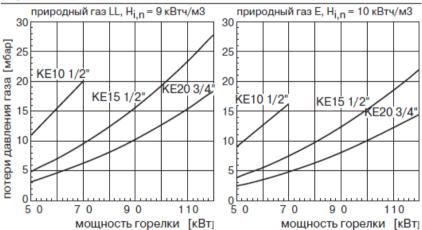


по крайней мере подходит газовый блок KEV30 11/2", при котором будет обеспечена мощность горелки 480 кВт.

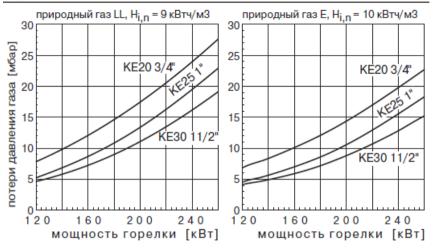
Пример 2:

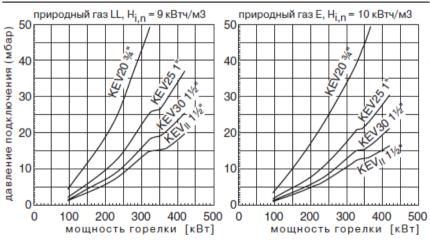
Мощность горелки: 450 кВт Сопротивление котла: 2 мбар природный газ Е (Н) Вид газа:

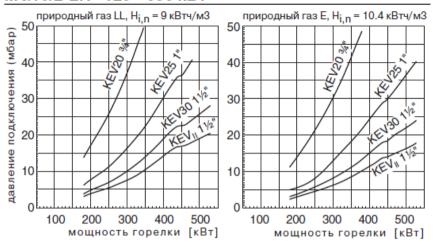
Какое мимимальное входное давление необходимо для газового блока KEV30 11/2"?

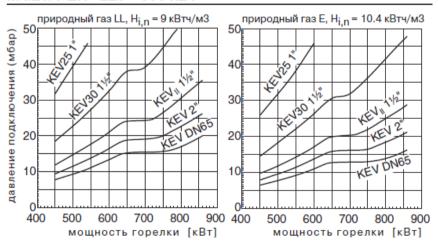

потери давления газа 16 мбар 2 мбар +сопротивление котла 18 мбар

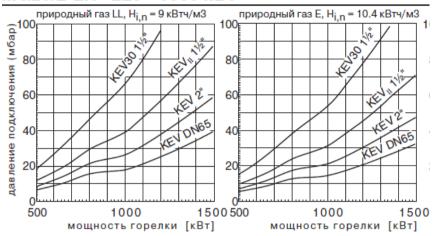
Необходимое давление газа на входе перед шаровым краном должно составлять не менее 18 мбар.

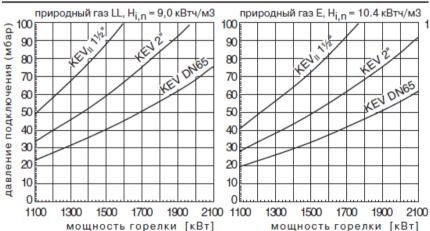

RG1 12 - 61 κΒτ

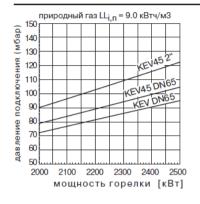

RG20 40 - 120 KBT

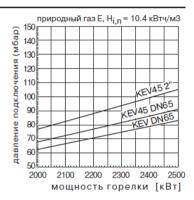

RG30 105 - 260 кВт


MG10/1-LN 95 - 420 κBτ

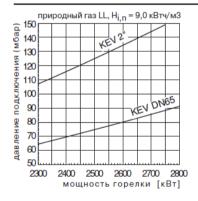

MG10/2-LN 125 - 530 κBτ

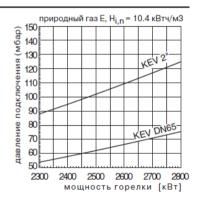

MG20/1-LN 225 - 860 κBτ


MG20/2-LN 225 - 1350 κBτ



MG3.2 530 - 2100 κBτ




MG3.3 640 - 2500 κBτ

MG3.4 790 - 2800 κBτ

* Для коксового газа использовать графики для природного газа LL и пересчитать мощность заданной теплоте сгорания.

5. Определение мощности нижней ступени горелки.

Современные газогорелочные устройства имеют качественные системы регулирования количества сжигаемого топлива в единицу времени (мощности) в зависимости от запроса на тепло (обратная связь от, например, температурных датчиков в водогрейных котлах, датчиков давления пара в паровых котлах и т. п.).

Наиболее простой режим регулирования – одноступенчатый, когда горелка работает только на одной установленной мощности, а в

случае отказа на запрос тепла отключается, характеризуется частыми розжигами горелки, особенно при пониженном запросе на тепло, что приводит к завышенному расходу топлива и уровню эмиссии вредных веществ в дымовых газах.

Более совершенным является двухступенчатый режим регулирования, когда при отсутствии запроса на тепло горелка не отключается, а переходит на так называемую, «низкую» или первую ступень с расходом сжигаемого газа 30–70 % от «высокого» пламени или второй ступени.

В настоящее время все чаще используется плавное или модулируемое регулирование, позволяющее сжигать именно то количество газа, которое требуется в данный момент времени.

Наиболее совершенным является режим регулирования микромодуляцией, когда качество сжигания контролируется перманентным мониторингом уровня эмиссий в дымовых газах с помощью обратной связи установленного на входе в дымовую трубу газоанализатора с регулятором соотношения «газ–воздух», установленном на регулирующем клапане.

В настоящем задании предлагается определить мощность «низкой» (первой) ступени в зависимости от минимального (летнего) расхода газа на единственном пламенном теплогенераторе, установленном в пятом цеху, теплотворной способности горючего газа и диапазона мощности, выбранного в результате выполнения дополнительного задания, горелочного устройства.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Ионин, А. А. Газоснабжение : учебник для студентов вузов / А. А. Ионин. 4-е изд., перераб. и доп. М.: Транспортная компания, 2016.-439 с.: ил., табл.
- 2. Системы производства и распределения энергоносителей промышленных предприятий : учеб. пособие / В. Г. Лисиенко, Н. М. Беляев, А. П. Несенчук и др..; под общ. ред. А. П. Несенчука. Минск; Выш. шк., 1989. 279 с.
- 3. Абрамович, Г. Н. Прикладная газовая динамика: в 2 ч. / Г. Н. Абрамович. Москва: Энергоиздат, 1991. Ч. 1. 600 с.
- 4. Стаскевич, Н. Л. Справочник по газоснабжению / Н. Л. Стаскевич, Г. Н. Северинец, Д. Я. Вигдорчик. Ленинград: Недра, 1990.-762 с.
 - 5. http://www.fiorentini.com.
 - 6. http://www.giersch.de.
- 7. Ахмедов, Р. Б. Дутьевые газогорелочные устройства / Р. Б. Ахмедов. М.: Недра, 1970. 264 с.
- 8. Technische Änderungen vorbehalten / 08.14 / Artikelnummer 72-10-58100-DE Printed in Germany / Enertech GmbH.
- 9. Абрамович, Г. Н. Прикладная газовая динамика: в 2 ч. / Г. Н. Абрамович. Москва: Энергоиздат, 1991. Ч. 2. 304 с.

Учебное издание

ЯРМОЛЬЧИК Юрий Петрович **ЯРМОЛЬЧИК** Марина Альбертовна

СИСТЕМЫ ГАЗОСНАБЖЕНИЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

Пособие для студентов специальности 1-41 01 05 «Промышленная теплоэнергетика и теплотехника»

Редактор В. И. Акуленок Компьютерная верстка Е. А. Беспанской

Подписано в печать 19.03.2020. Формат 60×84 $^{1}/_{16}$. Бумага офсетная. Ризография. Усл. печ. л. 4,71. Уч.-изд. л. 3,68. Тираж 100. Заказ 215.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/173 от 12.02.2014. Пр. Независимости, 65. 220013, г. Минск.