ЛИТЕРАТУРА

- 1. Ясвин, В. А. Образовательная среда: от моделирования к проектированию / В. А. Ясвин. М.: Смысл, 2001. 365 с.
- 2. Ковалев, Г. А. Психическое развитие ребенка и жизненная среда / Г. А. Ковалев // Вопросы психологии. 1993. №1 С.13–23.
- 3. Панюкова, Ю. Г. Психология среды: человек и его пространственно-предметное окружение: монография / Ю. Г. Панюкова. Красноярск: Сибирский Юридический институт, 2002. 183 с.

УДК 621.33

Кагало В. Г., Корзун А. Д.

РОТАЦИОННЫЕ КОМПРЕССОРА В ХОЛОДИЛЬНЫХ УСТАНОВКАХ

Белорусский национальный технический университет, г. Минск, Республика Беларусь Научный руководитель: канд. техн. наук, доцент Комаровская В. М.

В современных установках, обеспечивающих низкую температуру, чаще всего используется определенный вид компрессоров, а именно компрессоры ротационные.

Ротационные компрессоры пластинчатого типа очень удобны для перемещения больших объемов пара при малой степени сжатия. Поэтому их используют чаще всего в качестве первой ступени в низкотемпературных холодильных установок. Пластинчатые компрессоры отличаются легкостью запуска. Их объемная производительность в два раз выше объемной производительности компрессоров с катящимся ротором.

Следует отметить, что преимущество ротациооных типов компрессоров перед поршневыми аналогами заключается в меньшем потреблении энергии при запуске и низкой пульсации давления. В современной промышленности используются следующие виды ротационных компрессоров: с катящимся ротором и пластинчато-роторный.

В компрессоре с катящимся ротором (см. рисунок 1) хладагент подвергается сжатию с помощью эксцентрика, который устанавли-

вается непосредственно на ротор двигателя. Когда ротор вращается, эксцентрик перемещается по цилиндру компрессора изнутри, а пар, который находится перед ним, подвергается сжатию. Далее пар выходит из выпускного клапана, которым оснащен компрессор. Пластины способствуют разделению областей высокого и низкого давления, которое создается парами хладагента в цилиндре.

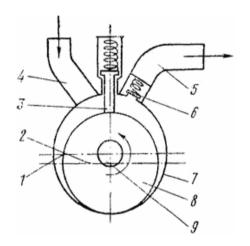


Рисунок 1 – Компрессор с катящимся ротором:

1 – ось цилиндра; 2 – ось ротора; 3 – лопасть;

4 – всасывающий патрубок; 5 – нагнетательный патрубок;

6 – нагнетательный клапан; 7 – цилиндр; 8 – ротор; 9 – вал

В пластинчато – роторном компрессоре (см. рисунок 2) хладагент подвергается сжатию при использовании пластин, которые устанавливаются во вращающемся роторе. Причем поверхность цилиндра соприкасается вплотную с краями корпуса, таким образом, происходит разделение областей всасывания и нагнетания.

Ротационные компрессоры по сравнению с поршневыми обладают следующими преимуществами:

- уравновешенный ход из-за отсутствия возвратно-поступательного движения;
 - возможность непосредственного соединения с электродвигателем;
 - равномерная подача газа;
 - меньший вес конструкции;
 - отсутствие клапанов.

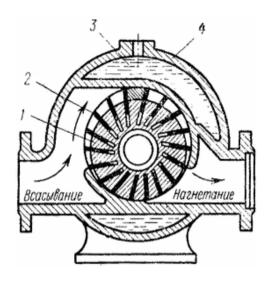


Рисунок 2 – Пластинчато-роторный компрессор: 1 – ротор; 2 – пластины; 3 – водяная рубашка; 4 – кожух

Таким образом, ротационные компрессоры, которые используются в различных холодильных агрегатах, обладают явными преимуществами перед своими аналогами.

УДК 621.793

Калюта И. В.

ПОДГОТОВКА ПОВЕРХНОСТЕЙ ПОДЛОЖЕК ПЕРЕД НАНЕСЕНИЕМ ТОНКОПЛЕНОЧНЫХ ПОКРЫТИЙ

Белорусский национальный технический университет, г. Минск, Республика Беларусь Научный руководитель: канд. техн. наук, доцент Комаровская В. М.

Современные технологии нанесения функциональных тонкопленочных покрытий предъявляют определенные требования к материалу основы. Материал, используемый для изготовления основы, должен иметь однородный состав, низкую шероховатость, обладать высокой электрической и механической прочностью, теплостойкостью и теплопроводностью, быть химически инертным, коэффици-