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In the paper, a solution of unsteady heat transfer problem with periodic boundary condition by means of bound-
ary integral equations method was presented. Also was presented the results of numerical simulation of heat transfer in
two dimensional area with oscillating temperature on the boundary.

1. Introduction

The phenomena of heat transfer witch the periodical changes of temperature on physical
boundaries of analysed objects takes place in many engineering mechanisms (engines, compres-
sors), heating and cooling systems and hydraulic networks.

Also the heat transfer equations with conditions of oscillation temperature or heat flux on
boundaries takes important role in mathematical description of many engineering, geothermal and
biological problems.

2. Equation of the heat conduction

The processes in which the main mechanism of the heat transfer is the mechanism of heat
conduction are described by Fourier-Kirchhoff equation.

The differential equation of unsteady heat conduction in homogeneous substance witch con-
stant thermal diffusion coefficient takes the form [1]:

vir- 2 -9 (1)

with initial condition (1.a) and boundary conditions (1.b).
qe A:T(q,t1=0)=Ty. (@)

(l1.a, 1.b)
pel,:T(p,)=T_ (g;rt)
ot
pe Ly:g(p,t)= _l$ =qr(p,t)

Fig. 1. Sketch for the two dimensional boundary problem analysis of Fourier equation

Particular form of the boundary condition is the condition of periodical changes of the tem-
perature on the boundary:

T (p,1) =T(p)exp(wt) (1.c)
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The first internal Fourier problem for differential equation (1) with conditions (1.a) and (1.b)
in two dimensional area (A) has the general solution of the integral form [1]:

t
T(p,t) +a J IT(q, T E(p,q.t, dL dt+ .”TOL (P)K(p.q.t,1)dA; =0 )
10 (L1) (A)
where the kernels (fundamental solutions) have the form:
) -
K(p.q,t,7) = exp| - (p,q)
4mo(t —1T) 4ou(t —1)
(2.a)
r(p,q)|cos(r(p,q),n,) .q)2
E(p.q.t,7) _ire.a) ————-exp S
8o’ (t—1) 4ot —1)
Function T(q,T) satisfies integral equation:
t
1
——2—T(p, +o j J‘ q(q, D K(p,q.t, )dLjdt = g(p, 1) 2)
o (Lp)
where:
gp, ) =T (p,v) - jJ‘TOL(P)K(P,q, t,)dA, (2"

(A)
The second internal Fourier problem for differential equation (1) with conditions (1.a) and
(1.c) in two dimensional area (A) has the general solution of the integral form [1}:

t
T(p,t)+a j J- q(q,T K(p.q,t, ’E)qud‘L' + IITOL (PK(Pp,q.t, ’t)qu =0 3)
T0 (L1) (A)
Function q(q, T) satisfies integral equation:
t
1
+5q(p, D+o J j a(q, D E(p.q,t,1)dLdt=h(p,0) (39
T0 (L)
where:
h(p,t) =qL (p,t) - '[.fTOL (PE(P.q.t,1)dA 3"

(A)

3. Selving the problem of the unsteady heat conduction with periodical boundary condi-
tion
The unsteady heat conduction in two dimensional object with condition of periodically
changed temperature on boundary line is described by the equation:
3°T 9°T 1 oT :
——7+—2———:0 Ty (p,t) =T exp(—wt) 4)
dx= dy” o ot
In this case the temperature may be treated as the function:
T=Uexp(-wt) T=T(x,y,t); U=U(x;y) 4)
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The space and time derivatives of the temperature are equal respectively:

ﬂ‘_ = alexp(—iu)t) 82_T = aZ—Uexp(—imt)
x I G
2 2
8_T_ = g—q—exp(—iwt) , 9_1; = a—lzjexp(—i(ot) (59
dy 9y dy” dy
ai = U(—iw)exp(—iwt)
ot

Introducing relations (5) to equation (4) leads to differential equation for function (U):

vZu+ktu=0 , k2=2 (5%)
o
The integral solution of differential equation has the form [2]:
U(p)=- J- ng - U(qQ)K(p,q)dLg + j U@EP.q)dL, ; p.qe(A) (6)

@ L)
where the kernels K(rp,rq) and E(rp,rq) are expressed by spherical Hankel functions of the first

kind of order zero and one [3]:

K(P,Q) :%Hz)l)(krpq)
_ : 1
E(p.q) =0, VK(P.q) =1k H{" (kr ) (6%)
oq =[P4
On the boundary line (A) function U(q) ; qe€ (A) satisfies the integral equation:
_ T*
J- ng-U(Q)K(p,q)dLy =T IE(p,q)qu 5 > Pae (L) (7

(L) (L)

4. Numerical solution of integral equation of heat conduction with periodical boundary
condition

Discrete solution of integral equation can be obtained approximating the boundary line by the
finite set of partial lines. Under condition, that considered equations are satisfied together with
boundary conditions on the partial lines (straight or curved elements) (fig. 2).

element [i]

\:fplilatil
LEDN

Fig. 2. Discretization of area (A)
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Integral equation can be expressed as the system of algebraic linear equations for the function

(Mj at collocation points on each element:
n
1 ou .
m(a_U) =2 SRR K(pyi)»q(j))dLq =
A = M
Lgjp
J
ST | R J E(p;pqpjdly (-05] 5 I=11 (7.2)
d (@Lgjp
I aU( )
S(B—U) =3 |5 3| Koeygagiig =
N = My
@5
J
T" || 3 .[ E(pipqpj)dlq [—05] 5 I=11 (7.b)
=
(Lgj)

In equations (7.a), (7.b) symbols R and 3 denotes the real and imaginary part of ker-
nels (6*).

5. Examples

Example (1) — Calculation temperature field in unitary square for the boundary temperature
distribution (fig. 3.):

left hand side Ty = 0° [C] right hand side Tg =100° [C] lower side Tp, =100° [C]

upper side Ty =0° +100° cos(wt) [C] and \E =1.0
o

ITU = TO + AT cos(mt)
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Fig. 3. 2D area

Figures (4.a) and (4.b) illustrated temperature profile respectively at x=0.5 and y=0.5 coordi-
nates for period (0,2x) . Figures (5) shows the evolution of the temperature field
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Fig. 4.a. Temperature profile x=const=0.5

100.00

90.00

80.00

70.00

60.00

50.00

40.00 £

3000 i S S RS R R R

N 1 T

10.00 -7 b B y=const=0.5

T S R
o = < (=] (=] =} < (=) < (=] —

Fig. 4.b. Temperature profile y=const=0.5
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Fig. 5. Temperaturefield in rectangular areafor boundary condition Ty = Tq + AT 0C5(COt)

Example (2) - Calculation temperature field d =f(z,t) in semi infinite area with periodical

boundary condition mE=fi*cos{(ot) where non-dimensional surplus of the mean temperature of area
(ground temperature example in the one year period).
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Fig. 6. Temperature field in semi infinite area for boundary condition = £y cos(mt)

BIBLIOGRAPHY

1. Brebbia K., Telles J.C.F., Wrobel L.C. Boundary Element Techniques. Theory and Appli-

cations in Engineering — Springer-Verlag, 1984.

2. Krzyzanski M. Partial differential equations of second order // PWN, 1971.

3. Hunter P. FEM/BEM Notes. — Auckland: 2002

113



