¹ИММС НАН Беларуси, г. Гомель ²ОАО «Белшина», г. Бобруйск

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ АВТОМОБИЛЬНОЙ ШИНЫ

Шилько С.В. 1 , Анфиногенов С.Б. 1 , Хотько А.В. 2

В докладе описано построение и апробация конечноэлементной модели шины, построенной в программном продукте «MSC.Marc». Моделируется комбинированное (поэтапное) нагружение шины и учитывается анизотропия упругих свойств материала с экспериментальной проверкой параметров при статическом нагружении.

Модернизация автомобильных шин предполагает большой объем исследований по определению их деформационно-прочностных и триботехнических характеристик [1]. Оптимизация конструкции шины путем изготовления и испытаний (стендовых, эксплуатационных) экспериментальных образцов в широком диапазоне варьируемых параметров (геометрические размеры и рисунок протектора, схемы армирования, рецептура и распределение материалов и т.д.) является трудоемкими и длительными. Для повышения эффективности ОКР в условиях современного шинного производства необходимо оптимизировать технические показатели изделий на стадии проектирования с использованием адекватных математических моделей. Опыт подобных исследований, проводимых фирмами «Гудьир», «Мишлен» и др. показал, что расчеты автомобильных шин являются весьма трудоемкими, что обусловлено их сложной геометрией, неоднородностью и анизотропией свойств материалов, а также рядом факторов силового воздействия, включая (по порядку возникновения): монтажные напряжения при посадке на обод; внутреннее давление; контактное взаимодействие с дорожным покрытием и ободом колеса в условиях широкого спектра эксплуатационных нагрузок. Расчет должен базироваться на соотношениях, адекватно описывающих нелинейные деформационные свойства армированных резин [2].

В частности, определение деформационно-прочностных характеристик автомобильных шин на стадии проектирования возможно при выполнении следующих условий: 1) полной характеризации вязкоупругих свойств материалов шины (резиновых смесей, армирующего корда); 2) детального анализа напряженно-деформированного состояния шины с учетом профиля и внутренней структуры; 3) проверки адекватности расчетной методики путем проведения испытаний.

Построение методики расчета, учитывающей названные требования, изложено в настоящем сообщении. Характеризация упругих свойств шины производится на основе статических механических испытаний стандартных образцов армированных материалов шины при растяжении и натурных образцов шин на сжатие; показатели вязкости определяются методом динамического контактного индентирования; для анализа напряженно-деформированного контакта используется метод конечных элементов.

В качестве объекта расчета были взяты легковые шины модели Бел-100, Бел-123, включающие ряд деталей (рис. 1), из которых определяющее влияние на деформационные

свойства шины оказывают текстильный каркас; боковина; протектор и брекер, армированный металлической проволокой.

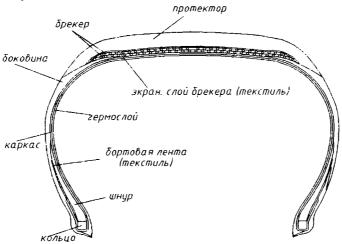


Рис. 1. Распределение материала в шине.

Конечноэлементное моделирование и расчет параметров НДС шины осуществляли в среде специализированных программных комплексов MSC. Patran и MSC. Marc с учетом распределения материала по чертежу, выполненному в ИТЦ ОАО «Белшина» с использованием программного продукта SolidWorks. Использовали чертеж по поперечному сечению шины с указанием бортового кольца, слоев каркаса и брекера. Дискретизация осуществлялась трехмерными шестигранными изопараметрическими девятиузловыми призматическими элементами, применимыми для описания больших деформаций резины. Можно считать, что резина является однородным, изотропным и несжимаемым материалом. Для характеризации упругих свойств резины из опыта на растяжение использовали методику, основанную на модели Муни-Ривлина [3].

Таблица 1 Константы модели Муни-Ривлина.

	Деталь			
Константы	Протектор	Боковина	Борт	
c ₁₀	0,23	0,14	0,34	
c ₀₁	0,08	0,06	0,03	

В расчете подразумевалось, что матричным материалом остальных деталей шины является вулканизированная резина, аналогичная материалу протектора.

Каркас и брекер, формируемые из резины, армированной тканями, представляют собой сложный класс композитов, поскольку жесткость и напряженное состояние каждого элемента структуры меняется от сечения к сечению. Брекерный слой работает в условиях многократных деформаций растяжения, сжатия и сдвига. Деформации, в особенности деформации сдвига, в этом слое велики и приводят к значительному теплообразованию. Ввиду низкой теплопроводности материала происходит накопление тепла и брекерный слой обыч-

но имеет более высокую температуру по сравнению с другими элементами шины. Прочность шин в основном определяется прочностью корда, имеющего модуль упругости во много раз выше модуля упругости резины и воспринимающего значительную долю нагрузки (модуль упругости металлакорда 19Л22/20 для брекера E=130 ГПа, вискозного корда 17ВХК-Н для каркаса E=4,3 ГПа). Нити корда в шине располагаются спирально и изолированно друг от друга. Технические константы материалов указанных деталей шины определяли по компонентам тензора податливости для однонаправленного армированного композита в соответствии с методикой, описанной в работе [4]. Можно заметить, что константы, найденные ранее для углов армирования $\alpha=+72^0$ и $\alpha=-72^0$, равны (Таблица 2), что уменьшает время расчета и упрощает построение конечноэлементной моде шины в программном продукте Магс.

Константы модели ортотропного материала

Таблица 2

Константы	Брекер(±72°)	Каркас(хх)	Каркас(уу)
Ех, МПа	15,77	1397	11,65
Еу, МПа	16,6	11,65	1397
E_z , МПа	68,1	11,65	11,65
V_{xy}	0,826	0,484	0,004
V_{yz}	0,092	0,957	0,478
v_{zx}	0,608	0,004	0,957
G _{ху} , МПа	4,361	3,963	3,936
G _{yz} , МПа	5,866	2,976	3,936
G_{zx} , МПа	7,823	3,036	2,976

Борта, предназначенные для крепления шины на ободе, являются относительно жесткими деталями, что обеспечивается бортовым кольцом из стальной проволоки (модуль упругости $E=200\ \Gamma\Pi a$, коэффициент Пуассона v=0,33), работающим в основном на растяжение.

На рис. 2 приведена структура трехмерной конечноэлементной модели шины.

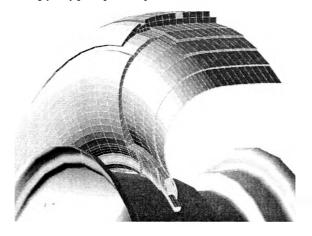


Рис. 2. КЭ - модель шины.

Для решения задачи, характеризующейся осесимметричным нагружением и деформированием шины, например, при посадке на обод или приложении внутреннего давления, могут быть использованы осесимметричные модели (рис. 3), существенно более простые. Геометрия профиля и линии, распределение материала, положение каркаса и брекера в слоях резины после дополнительной оптимизации чертежа, была получена из файла в формате *.igs. Для учета армирующих нитей каркаса и брекера использовали модель ортотропного материала.

Задача решалась в два этапа - посадка шины на обод и прижатие к плоскости, представленной абсолютно твердым телом, принятой за дорожное покрытие, принимая за основную нагрузку – собственный вес автомобиля и груза.

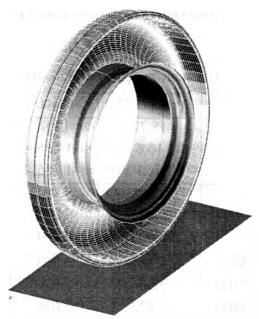


Рис. 3. Объемная осесимметричная модель шины.

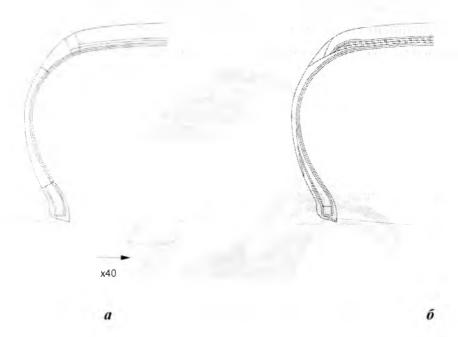


Рис. 4. Начальное (а) и конечное (б) положение обода.

Чертеж распределения материала в шине (рис.4б) был модифицирован для удобства построения конечноэлементной сетки с предварительным разделением на вспомогательные плоскости (рис.4 а). Изначально обод был расположен на позиции со смещением по оси X на -40 мм, как показано на рисунке 4 и был смоделирован преобразованием плоских элементов в трехмерные относительно оси вращения (рис.5). Исходные данные: модуль упругости E = 200 ГПа, коэффициент Пуассона v = 0.33.

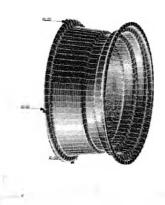


Рис. 5. КЭ - модель обода 5Ј-13

Отметим, что составляющие элементы шины моделировались слоем резины с известными характеристиками, который заполняет область, образуемую вращением внешнего контура сечения реального сечения шины из плоских элементов, показанных на рисунке 6, вокруг оси колеса в соответствии с рис. 6. Модель включала 37899 узлов, 25919 элементов.

На первом этапе задавалось смещение обода вдоль оси X на расстояние 40 мм, входя в контакт с бортом шины. После этого шина нагружалась давлением по нормали к внутренней поверхности, находясь в контакте только с ободом. В результате были получены компоненты напряженно-деформированного состояния шины, посаженной на обод и нагруженной внутренним давлением.

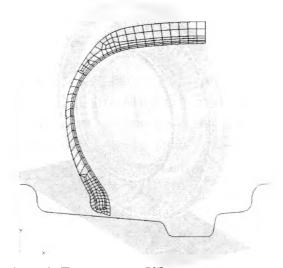


Рис. 6. Двухмерная КЭ - модель шины.

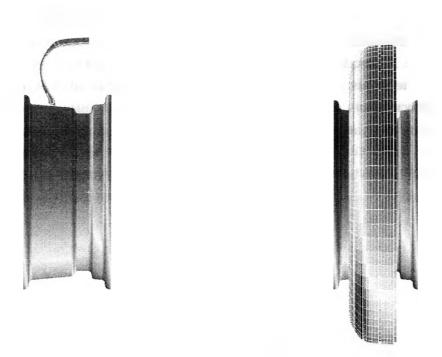


Рис. 7. Начальное положение обода 5J-13 относительно шины 175/70R13 Бел 100.

На следующем этапе происходит прижатие к дорожному покрытию, под действием вертикальной силы приложенной к узлу расположенному на оси вращения обода (рис. 8), это осуществлено жесткой связью с узлами обода, по средствам вспомогательной функции MPC (многоточечное ограничение) в программном комплексе «MSC.Patran». MPCs может использоваться для моделирования определенных физических явлений, которые не могут быть легко смоделированы, используя конечные элементы, типа твердых связей.

$$U_0 = C_1 U_1 + C_2 U_2 + C_3 U_3 + \dots + C_n U_n + C_0$$

где U_0 - зависимая степень свободы, $U_{\rm i}$ - независимые степени-свободы, $C_{\rm i}$ - константы. C_0 - независимый параметр.

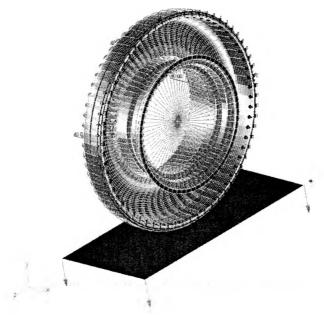


Рис. 8. Конечноэлементный аналог статического нагружения шины.

Сравнение экспериментального и расчетного значения параметров при давлении в шине 0,25 МПа и нагрузке 3700 H

	Значение		
Наименование параметра	Эксперимент	Расчет	
Статический радиус, мм	265±1	276,2	
Ширина профиля, мм	189±1	203,7	
Размер пятна контакта,	164x142	142,8x103,3	
ММ			

В результате расчета получены компоненты НДС шины, посаженной на обод и нагруженной внутренним давлением. Разработанная КЭ-модель позволяет оценить измеримые и важные для потребителей параметры, приведенные в таблице 3. Для повышения точности расчета необходимо более полно учесть анизотропию материала деталей шины, что является предметом дальнейших исследований.

В результате расчета получены компоненты НДС шины, посаженной на обод и нагруженной внутренним давлением. Разработанная КЭ-модель позволяет оценить измеримые и важные для потребителей параметры, приведенные в таблице 3. Для повышения точности расчета необходимо более полно учесть авчизотропию материала деталей шины, что является предметом дальнейших исследований.

ЗАКЛЮЧЕНИЕ

В результате расчета получены компоненты НДС шины, посаженной на обод и нагруженной внутренним давлением. Разработанная КЭ-модель позволяет оценить измеримые и важные для потребителей параметры, приведенные в таблице 3. Для повышения точности расчета необходимо более полно учесть анизотропию материала деталей шины, что является предметом дальнейших исследований.

ЛИТЕРАТУРА

- 1. Кнороз В.И. Работа автомобильной шины. М.: Транспорт, 1976.
- 2. Тканые конструкционные композиты / Под ред. Т.-В. Чу и Ф. Ко.- М.: Мир, 1991.
- 3. Гавриленко С.Л. Об устойчивых методах решения вырожденных систем линейных алгебраических уравнений на примере идентификации модели Муни-Ривлина. // Научно-метод. основы примен. инф. техн. в препод. механики и научн. иссл.: Тез. докл. 37 респ. н/м семин., Минск, 2-3 февраля 2006 / Мин. образов. Респ. Беларусь. БНТУ.— Минск, 2006.— С. 157-160.
- 4. Малмейстер А.К., Тамуж В.П., Тетерс Г.А.. Сопротивление жестких полимерных материалов. Рига: Зинатне, 1972.