БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ МАШИНОСТРОИТЕЛЬНЫЙ ФАКУЛЬТЕТ КАФЕДРА «Технологические оборудование»

ДОПУЩЕН К ЗАЩИТЕ Заведующий кафедрой С.С.Довнар 2020г.

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА ДИПЛОМНОГО ПРОЕКТА

«Разработать компоновку горизонтального обрабатывающего центра с ЧПУ с шириной стола 1400мм и конструкцию привода главного движения с поворотной шпиндельной головкой с наибольшей частотой вращения шпинделя 4000 мин⁻¹»

ДП 303539/530-2019 РПЗ

Специальность 1-36 01 03 «Технологическое оборудование машиностроительного производства» Специализация 1-36 01 03-01 «Металлорежущие станки»

Обучающийся группы 30305115	Титов В.В.
Руководитель	Якимович А.М. к.т.н., проф.
Консультанты	
по разделу «Охрана труда»	Пантелеенко Е.Ф ————————————————————————————————————
по разделу «Экономическая часть»	Бутор Л.В. ст.препод.
по разделу «Кибернетическая часть»	Колесников Л.А. Монго к.т.н., доц.
Ответственный за нормоконтроль	Маркова Е.А. ст. препод.
Объемы проекта:	71.
Расчетно-пояснительная записка	листов;
Графическая часть	листов;
Магнитные (пифровые) носители	единиц.

Минск 2019

Реферат

Дипломный проект: 156 стр.; 13 табл.; 63 ил.; 17 ист.; 1 прил.

ПРИВОД ГЛАВНОГО ДВИЖЕНИЯ, ЧАСТОТА ВРАЩЕНИЯ, ГОРИЗОНТАЛЬНЫЙ ОБРАБАТЫВАЮЩИЙ ЦЕНТР, МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ, ОХРАНА ТРУДА, ЭКОНОМИЧЕСКАЯ ЧАСТЬ

Целью данного дипломного проекта является разработка компоновки горизонтального обрабатывающего центра с ЧПУ с шириной стола 1400мм и конструкции привода главного движения с поворотной шпиндельной головкой с наибольшей частотой вращения 4000 мин⁻¹.

В проекте представлено обоснование компоновочного решения проектируемого станка, поворотной шпиндельной головки, описывается назначение, а также их кинематика. Проведен патентно-информационный поиск.

В пояснительной записке предоставлены проектные и проверочные расчеты разрабатываемой поворотной шпиндельной головки. В кибернетической части проекта выполнен расчет поворотной шпиндельной головки разрабатываемого станка в программе конечно-элементного анализа Ansys Workbench, с помощью предварительно созданной 3D-модели поворотной шпиндельной головки в программе трехмерного проектирования SolidWorks, результаты которого можно увидеть в графической части проекта.

В пояснительной записке рассмотрены требования к охране труда и экологической безопасности, предъявляемые при работе на станке. В графической части приведен общий вид станка и знаки безопасности, используемые на нем. В экономической части проекта дано экономическое обоснование проектируемого узла.

Студент-дипломник подтверждает, что приведенный в дипломном проекте расчётно-аналитический материал объективно отражает состояние разрабатываемого объекта, все заимствованные из литературных и других источников теоретические и метрологические положения и концепции сопровождаются ссылками на их авторов.

Литература

- 1. Кочергин, А.И. Шпиндельные узлы с опорами качения: учебнометодическое пособие по курсовому проектированию металлорежущих станков для студентов машиностроительных специальностей /А.И. Кочергин, Т.В. Василенко. –Минск: БНТУ, 2007. 124 с.
- 2. Кочергин, А.И. Конструирование и расчёт металлорежущих станков и станочных комплексов /А.И. Кочергин. Минск: Вышэйшая школа, 1991. -382 с.
- 3. Ничипорчик, М.И. Детали машин в примерах и задачах Минск: Вышэйшая школа, 1981. 432 с.
- 4. Металлорежущие станки: в 2 т. / под ред. В.В. Бушуева. М.: машиностроение, 2011. Т.1. 608 с.; Т.2. 584 с.
- 5. Кочергин, А.И. Автоматы и автоматические линии /А.И. Кочергин. Минск: Вышэйшая школа, 1980. -288 с.
- 6. Асинхронные двигатели Siemens. Привод главного движения 1РН7. Руководство по проектированию. Германия, 2004. 176 с.
- 7. Курмаз Л.В. Скойбеда А.Т. Проектирование. Детали машин. Мн.: УП «Технопринт» 2005 г.
- 8. Синхронные серводвигатели Siemens. Руководство по проектированию. Германия, 2010. 129 с.
- 9. Вращающиеся инструменты. Руководство по выбору инструмента и расчёта режимов резания. США, 2018. 596 с.
 - 10. Шариковинтовые приводы Rexroth. 2012. 122 с.
 - 11. Heidenhain [сайт предприятия] http://www. heidenhain.by/.
 - 12. Balluff [сайт предприятия] http://www.balluff.ru/.
- 13. Колесников, Л.А. Исследование статических и динамических характеристик шпиндельных узлов станков при автоматизированном проектировании. Минск: БНТУ, 2016. 38 с.
- 14. Методические указания по выполнению раздела "Охрана труда" в дипломных проектах для студентов специальностей: 1-36 01 01 "Технология

- машиностроения", 1-36 01 03 "Технологическое оборудование машиностроительного производства", 1-36 01 04 "Оборудование и технологии высокоэффективных процессов обработки материалов" / сост. Б. М. Данилко и Т. Н. Киселева. Минск: БНТУ, 2010. 24 с.
- 15. Удаление пыли и стружки от режущих инструментов./ Власов А.Ф. М.: Машиностроение, 1982. 240 с.
- 16. Расчет экономической эффективности внедрения новых технологических процессов : учебно-методическое пособие для студентов машиностроительных специальностей (курсовое и дипломное проектирование) / И. М. Бабук, А. А. Королько, С. И. Адаменкова и Е. Н. Костюкевич. Минск : БНТУ, 2010. 56 с.
 - 17. Bosch-rexroth [сайт предприятия] https://www.boschrexroth.com/.