

SU (1) 1118473 A

3 (51) B 22 C 3/00

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

(21) 3510366/22-02

(22) 12.11.82

(46) 15.10.84.Бюл. № 38

(72) Д.М.Кукуй, В.В.Шевчук, Е.И.Бельский, Ф.Ф.Можейко, М.М.Петуков, И.М.Распопин, В.С.Макаренко, В.С.Прикота и Е.П.Литвинов

(71) Велорусский политехнический институт и Институт общей и неорганической химии АН БССР

(53) 621.744.079(088.8)

(56) 1. Авторское свидетельство СССР № 224004, кл. В 22 С 3/00, 1967.

2. Сварика А.А.Покрытия литейных форм. М., "Машиностроение", 1997, с. 77.

(54)(57) 1. ПРОТИВОПРИГАРНОЕ ПОКРЫТИЕ ДЛЯ ЛИТЕЙНЫХ ФОРМ И СТЕРЖНЕЙ, включающее графит скрытокристаллический, блинистый минерал, сульфитно-дрожжевую бражку и воду, о т л и ч а ю щ еес я тем, что, с целью повышения прочности в агломерированном состоянии и ускорения растворимости агломератов в воде, оно дополнительно

содержит насыщенный 35%-ный водный раствор технической соли на основе отходов галургического производства клористого калия при следующем соотношении ингредиентов, мас.%:

Глинистый минерал 3-5
Сульфитнодрожжевая бражка 4-10
Указанный раствор технической соли 0,3-3,0
Вода 2-5
Графит скрыто-'
кристаллический Остальное

2. Покрытие по п.1, о т л ич а ю щ е е с я тем, что, техническая соль на основе отходов галургического производства хлористого калия содержит мас. 7:

Хлорид калия 0,8-3,5 Глинистые минералы 0,4-2,5 Хлорид натрия Остальное

20

Изобретение относится к литейному производству, а именно к составам противопригарных покрытий для литейных форм и стержней.

Известны составы противопригарных покрытий для литейных форм и стержней, содержащие огнеупорный наполнитель, глину, органическое связующее, водный раствор хлорида натрия или калия и воду при заданном соотношении ингредиентов [1].

Данные покрытия обладают низкой прочностью после сушки и недостаточной прочностью сцепления с формой.

Наиболее близки к предлагаемому по технической сущности и достигаемому результату является противопригарное покрытие, включающее мас. %:

Графит скрыто-	
кристаллический	58,5
Глинистый	•
минерал	3,5
Сульфитно-дрож-	
жевую бражку	10,0
Вода	10,0 28,0 [2].

Недостатком известного покрытия является низкая прочность в агломерированном состоянии и плохая растворимость агломератов в воде.

Цель изобретения - повышение прочности покрытия в агломерированном состоянии и ускорение растворимости агломератов в воде.

Поставленная цель достигается тем, что противопригарное покрытие для литейных форм и стержней, включающее графит скрытокристаллический, глинистый минерал, сульфитно-дрожжевую бражку и воду, дополнительно содержит насыщенный 35%-ный водный раствор

технической соли на основе отходов галургического производства хлористого калия при следующем соотношении ингредиентов, мас. %:

	Глинистый минерал	3-5
	Сульфитно-дрожже-	•
	вая бражка	4-10
••	Указанный раст-	
	вор технической	
	соли	0,3-3,0
	Вода	2-5
	Графит скрытокрис-	•
	таллический	Остальное

При этом техническая соль на основе отходов галургического производства хлористого калия содержит, мас. %:

Хлорид калия	0,8-3,5
Глинистые	
минералы	0,4-2,5
Хлорид натрия	Остальное
R vanacaba ornava	anuana wananin

В качестве огнеупорного наполнителя используют графит скрытокристаллический.

Введение раствора технической соли в покрытие обеспечивает повышение прочности покрытия в агломерированном состоянии как до сушки, так и после. При этом растворимость агломератов в процессе приготовления суспензии значительно ускоряется.

При содержании в покрытии раствора технической соли менее 0,3 мас. % не наблюдается заметного увеличения прочности и скорости растворения агломератов покрытия, а при содержании более 3 масс. % имеет место снижение показателей указанных параметров.

Предлагаемые составы покрытия (1-3) и прототипа (4) приведены в табл.1, а их свойства в табл.2.

Таблица 1

Ингредиенты	Состав мас.%					
	1	2	3	4		
Глинистый минерал	3	4	5	3,5		
Сульфитно-дрожжевая бражка	4	7	10	10		
35%-ный водный раст- вор технической соли	0,3 *)	2,0 **)	3,0 *1	(¥) <u> </u>		
Вода	5	4	.5	2		
Графит скрытокристал- лический	87,7	83	80	83,5		

^{· *), * *), * **) -} соответственно по нижнему, среднему и верхнему значению содержания ингредиентов в составе технической соли.

الله والله الله الله الله الله الله الله				1.a o j	тица 2	
Свойства		Показатели для составов				
		1 *	`2	3	4	
Прочность агломератов на сжатие сразу после прессования, при уси- лии, МПа						
4,0		0,70	0,70	0,60	0,35	
5,5		0,75	0,75	0,6	0,45	
7,0		0,80	0,75	0,65	0,45	
Прочность агломератов на сжатие сразу после сушки, МПа в течение						
2 мин, при 270°C	<i>,-</i>	0,90	0,90	0,85	0,5	
5 мин, при 230 ⁰ С		0,90	0,90	0,85	0,5	
4 мин, при 250 ⁰ С		0,90	0,90	0,90	0,55	
Прочность прессованных агломератов через двое сут, после сушки	•					
МПа, в течение 2 мин при 270 ⁰ С	•	3,5	4,5	4,0	0,85	
5 мин при 230 ⁰ С		3,5	4,5	4,0	0,85	
4 мин при 250 ⁰ C		3,5	4,5	4,0	0,85	
Время растворения аг- ломератов в воде, мин	•	30	25	20	240 .	
Litti		30	4.5	20	240 , .	

Противопригарное покрытие приго-тавливается следующим образом.

В мешалку заливают сульфитно-дрожжевую бражку, воду и раствор технической соли и перемешивают 5-7 мин. Затем загружают последовательно глинис-45 тый минерал и графит скрытокристаллический, перемешивая содержимое после введения каждого компонента 8-10 мин. После этого полученную пасту агломерируют путем прессования 50 под давлением 4-7 МПа, а полученные агломераты (брикеты или гранулы) подвергают сушке при 230-270°C в течение 2-5 мин. В таком виде агломераты поставляют к рабочим местам. Для приготовления суспензии противопригарного покрытия, агломераты растворяют при перемешивании в течение 30 мин в требуемом количестве воды.

Реализация изобретения позволит поставлять противопригарное покрытие в гранулированном виде, что обеспечит сокращение транспортных перевозок и замены дефицитных деревянных бочек на бумажные или целлофановые мешки. Экономический эффект составит свыше 600 тыс. руб.