SU₍₁₉₎ SU₍₁₁₎ 1281594 A 1

(5D 4 C 21 D 1/25, 6/04

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 3823754/22-02
- (22) 14.12.84
- (46) 07.01.87. Бюл. № 1
- (71) Белорусский политехнический ин-
- (72) Е.И. Бельский, А.С. Чаус,
- В.Ф. Соболев, Ф.И. Рудницкий,
- Р.Л. Тофпенец, Ю.В. Соколов,
- С.Е. Бельский, С.В. Сашнев и Т.Н.Ма-лаховская
- (53) 621.785.6(088.8)
- (56) Авторское свидетельство СССР № 954450, кл. С 21 D 6/04, 1978.

Ревис И.А., Левинсон А.М., Налетов В.С. Использование глубокого охлаждения при производстве литого инструмента без закалки.— В сб.: Использование холода в инструментальном производстве, ЛДНТП, 1977, с.11-14.

(54) СПОСОБ ОБРАБОТКИ ЛИТОГО ИНСТРУ-МЕНТА ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ (57) Изобретение относится к машиностроению, в частности, к способам обработки литого инструмента из быстрорежущих сталей. Целью изобретения является повышение прочности, ударной вязкости, тепло-и износостойкости литого инструмента. Закалку отливок, находящихся в твердожидком состоянии при температуре 1280-1360°С, проводят в среде жидкого азота со скоростью охлаждения, достигающей 700°C/с. Длительность выдержки при минусовых температурах составляет 15-25 мин. После извлечения на воздух и достижения температуры окружающей среды изделия подвергают отжигу при 570-580°С в те-

чение 1 ч и механической обработке.

1 табл.

10

Изобретение относится к машиностроению, в частности к способам обратотки литого инструмента из быстрорежущей стали, механическая обработка которого после литья и отпуска сводится к шлифованию и заточке.

1

Цель изобретения - повышение прочности, ударной вязкости, тепло-и износостойкости литого инструмента из быстрорежущей стали.

Высокая скорость охлаждения расплава из твердожидкого состояния. достигающая 700°С/с, от температуры 1280-1360°C до температуры жидкого азота, приводит к значительным изменениям структуры литого металла, количество эвтектической составляющей резко уменьшается, наблюдаются равномерно распределенные мелкие выделения избыточных карбидов, мартенсит имеет тонкодисперсное строение. Структура литой быстрорежущей стали, обработанной по предлагаемому способу, близка к структуре деформированной стали, что приводит к повышению ударной вязкости и износостойкости. Повышение твердости и теплостойкости достигает. ся за счет более высокой степени легированности твердого раствора при охлаждении в жидком азоте. Выдержка в среде жидкого азота в течение 15-25 мин способствует более полному превращению аустенита в мартенсит, в результате чего отпадает необходимость в проведении многократного отпуска.

Пример. Образцы для механических испытаний и режущие пластины из стали изготавливают и обрабатывают по предлагаемому способу следующим образом: расплав заливают в графитовый кокиль, подогретый до 800°С, и при температуре литья 1280-1360°С помещают в термоизоляционную емкость, заполненную жидким азотом.

После выдержки при минусовых температурах в течение 15-25 мин отливки извлекают и выдерживают на воздухе для достижения температуры окружающей среды, затем подвергают однократному отпуску при 570-580°С в течение 1 ч и механической обработке.

По известному способу отливки в графитовом кокиле охлаждают до ком-натной температуры, обрабатывают холодом в жидком азоте, затем отжигают при 560° С в течение 1 ч и подвергают механической обработке.

Ударную вязкость стали, обработанной по предлагаемому и известному способам, определяют на образцах размером 10х10х55 мм без надреза на маятниковом копре с энергией удара ≈50 Дж. Теплостойкость оценивают по результатам измерения твердости после 4-часовой выдержки образцов при 620°С. Износостойкость режущих пластин определяют при токарной обработке стали диаметром 80 мм с шпоночным пазом по следующему режиму резания: подача 0,125 мм/об; глубина 1 мм; скорость 38 м/мин.

Режимы обработки стали по предлагаемому и известному способам и ее свойства приведены в таблице.

Как следует из приведенных в таблице данных, предлагаемый способ обработки литого инструмента из быстрорежущей стали обеспечивает по сравнению с известным повышение ударной вязкости в 2,6-3,1, износостойкости в 1,8-2,0, предела прочности на изгиб в 1,6-1,75 раза и теплостойкости на 1,8-3,5%.

Формула изобретения

Способ обработки литого инструмента из быстрорежущей стали, включающий закалку, отпуск и механическую обработку, отличающий ийсятем, что, с целью повышения прочности, ударной вязкости, тепло-и износостой-кости инструмента, закалку осуществляют непосредственно при твердожидком состоянии от температур 1280-1360°С в среде жидкого азота с выдержкой в течение 15-25 мин.

50

								·
Способ обра- ботки	Параметры режимов обработки			Свойства стали				
	Темпе- рату- ра за- калки, °С	Время вы- держ- ки при минусо- вых темпе- рату- рах,мин		Твер- дость НКС		ная вяз- кость	1	стой- кость, мин
Предлагае-								•
мый 1	1280	15	570	62	57	160	2600	124
2	1360	23	580	63	58	190	2800	141
3	1330	20	580	63	58	180	2700	134
4*	1260	15	560	62	56,5	110	2100	102
5.*	1380	25	590	62,5	56	90	1800	82
Известный	-	~	560	63	56	60	1600	69

1281594

Составитель В. Справцев Редактор В. Петраш Техред А.Кравчук Корректор Л. Патай Заказ 7218/21 Тираж 550 Подписное ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д. 4/5 ______

^{*} Режимы обработки отличаются тем, что параметры выходят за предлагаемые пределы.