Союз Советских Социалистических Республик

Государственный комитет Совета Министров СССР по делам изобретений и открытий

ПИСАНИЕ | (11) 502968 ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву —

(22) Заявлено 01.07.74 (21) 2039965/22-1

с присоединением заявки № --

(23) Приоритет —

Опубликовано 15.02.76. Бюллетень № 6

Дата опубликования описания 24.05.76

(51) M. Kл.² C 22C 21/04

(53) УДК 669.715'782'721' '3'28(088.8)

(72) Авторы изобретения

Д. Н. Худокормов, А. М. Галушко и С. Н. Леках

(71) Заявитель

Белорусский ордена Трудового Красного Знамени политехнический институт

(54) СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

10

1

Изобретение относится к области изыскания сплавов на основе алюминия, предназначенных для изготовления деталей, работающих в условиях термоциклирования, в частности, для изготовления алюминиевых водоохлаждаемых постоянных форм.

Известен сплав на основе алюминия, содер-

жащий, вес. %:

Кремний	8,6-9,4
Магний	0,4-0,6
Медь	1,6—2
Титан	до 0,2
Железо	до 0,2
Алюминий	Остальное

Известный сплав имеет недостаточно высо- 15

кую термостойкость.

С целью повышения термической стойкости предложенный сплав в отличие от известного дополнительно содержит молибден при следующем соотношении компонентов, вес. %:

Кремний	6—12
Магний	0,2-0,5
Медь	0,5-2,5
Молибден	0,05-0,5
Алюминий	Остальное

Сравнительные свойства предложенного (І) и известного (II) сплавов после закалки и старения приведены ниже.

II

Число термоциклов до появления первой трещины

600

Стойкость кокилей (число заливок

чугуна)

1800-2000

800

1300-1600

Формула изобретения

Сплав на основе алюминия, включающий кремний, магний, медь, отличающийся тем, что, с целью повышения термической стойкости, он дополнительно содержит молибден при следующем соотношении компонентов, вес. %∶

Кремний		6-12
Магний		0,2-0,5
Медь		0,52,5
Молибден		0,05-0,5
∆ пюминий		Остальное