Союз Советских Социалистических Республик

Государственный комитет
СССР
по делам изобретений
и открытий

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 25.08.77 (21) 2519462/18-24

с присоединением заявки 🌬 🕒

(23) Приоритет -

Опубликовано 07.07.80. Бюллетень № 25

Дата опубликования описания 08.07.80

(51) М. Кл² G 06 G 7/68

1(11) 746600

(53) УДК ⁶⁸¹. .333(088.8)

(72) Автор изобретения

В. М. Овсянко

(71) Заявитель

Белорусский ордена Трудового Красного Знамени политехнический институт

(54) УСТРОЙСТВО ДЛЯ МОДЕЛИРОВАНИЯ СТЕРЖНЯ

1

Изобретение относится к аналоговой вычислительной технике, предназначено для расчета ферм, материал которых является нелинейным.

Известны устройства для расчета стержневых систем, содержащие резистор- мую сетку и функциональные преобразователи [1].

Недостатками известных устройств являются узость функциональных возможностей, необходимость ручного многошиклового уравновешивания.

Наиболее близки: по технической сущности к рассматриваемому являются устройства, содержащие резисторную сетку, первая, вторая, третья и четвертая узловенно с первой, второй, третьей и четвертой цепочками из последовательно соединенных блока умножения на постоянный коэффициент, инвертора и резистора, каждая из которых подключена к одноменной узловой точке, первая узловая точка резисторной сетки через соответст-

2

вующие резисторы соединена со второй и четвертой узловыми точками резисторной сетки, третья узловая точка резисторной сетки через соответствующие резисторы соединена со второй и четвертой узловой точкой резисторной сетки, выходы блоков умножения первой и третьей цепочек соединены соответственно с третьей и первой узловыми точками, вывертой цепочек подключены соответственно к четвертой и ко второй узловым точкам, и источники напряжения [2].

Недостатком известного устройства является узость функциональных возможностей, оно может моделировать стержни только из линейного материала.

Цель изобретения – расширение функциональных возможностей устройства.

Поставленная цель достигается тем, что в устройство введены выпрямительные диоды, дополнительные резисторы и дополнительный блок умножения, вход которого соединен с пятой узловой точкой

5

резисторной сетки, соответственно через выпрямительные диоды связанной с источниками напряжения и через соответствующие дополнительные резисторы — с первой, второй, третьей и четвертой узловыми точками резисторной сетки, пятая узловая точка которой через соответствующие дополнительные резисторы подключена к выходам блоков умножения второй и четвертой цепочек, выход дополнительного блока умножения подключен к шестой узловой точке резисторной сетки, через соответствующие дополнительные резисторы соединенной с первой и третьей узловыми точками.

На фиг. 1 показан график нелинейной зависимости между напряжением и отно-сительным удлинением стержня из нелинейного материала; на фиг. 2 представлено устройство для моделирования стерж— 20 ня фермы из нелинейного материала.

Устройство содержит резисторную сетку с узловыми точками 1-6, резисторы 7-18, проводимости которых равны соответственно $q_1,q_3,\frac{6}{2},\frac{6}{2},g_4,g_2,g_5,\frac{6}{2},\frac{6}{2},\frac{6}{2},g_6,6,6$, 25 дополнительные резисторы 19-26, проводимости которых равны соответственно g,g,g_0,g_0,g_0,g,g,g_0 , блоки умножения на постоянный коэффициент 27-30, для которых отношение сопротивлений обратной связи и входного $\frac{R_0}{R_1}$ =2, инверторы напряжения 31-34, для которых отношение сопротивлений обратной связи $\frac{R_0}{R} = 1$, дополнительный и входного блок умножения 35 с отношением сопротивления обратной связи и входного $\frac{K_0}{S}$ =2, выпрямительные диоды 36, 37 источники опорного напряжения 38 и 39, равные С и С.

Реальные материалы, используемые при изготовлении ферм, имеют нелинейную зависимость между напряжением (э и относительным удлинением (фиг. 1). Расчет ферм из нелинейного материала сложен и для статически неопределимых ферм трудно разрешим. Задача в такой постановке может быть решена только с помощью предлагаемого устройства. Если материал фермы работает на участках Гили Д длаграммы,

$$G_{\mathbf{r}} = tg \, \Psi \cdot \mathcal{E} + tg \, \theta \cdot \mathcal{E}, \, \mathbf{N}_{\mathbf{r}} = \mathbf{F} \cdot G_{\mathbf{r}} \quad (1)$$

$$G_{\underline{\mathbf{u}}} = tg \, \Psi \cdot \mathcal{E} + tg \, \theta \, \mathcal{E}_{11}, \, \mathbf{N}_{\underline{\mathbf{u}}} = \mathbf{F} \cdot G_{\overline{\mathbf{u}}} \quad (2)$$

где F — плошадь сечения стержня, $tg\psi$ и $tg\theta$ имеют смысл модуля упругости материала.

Относительное удлинение стержня є равно для стержня і к длиной є : є = (x_i-x_k) cosd + (y_i-y_k) site , (3) где — угол наклона стержня фермы к горизонтальной линии, тальной линии, зонтальные и вертикальные перемещения

концов стержня і и к Подставив (3) в (1, 2), получаем усилие в стержне.

Проекция усилия в стержне на горизонтальную и вертикальную оси тогда 15 будут определяться следующим образом.

Если стержень работает на участке 1, $N_{\rm r}\cos d = tg \, \psi$. F. E $\cos d + tg \, \theta$ F. E $\cos d$, $-N_{\rm r}\cos d = -tg \, \psi$ F. E $\cos d - tg \, \theta$ F. E $\cos d$, $N_{\rm r}\sin d = tg \, \psi$ F. E $\sin d + tg \, \theta$ F. E $\sin d$, $-N_{\rm r}\sin d = -tg \, \psi$ F. E $\sin d - tg \, \theta$ F. E $\sin d$. (4) Если стержень работает на участке $\hat{\mathbf{I}}$ (фиг. 1),

 $N_{\underline{y}} \cos d = tg \Psi F \mathcal{E} \cos d + tg \mathcal{O} F Z_1 \cos d$, $-N_{\underline{y}} \cos d = -tg \Psi F \mathcal{E} \cos d - tg \mathcal{O} F Z_2 \cos d$, $N_{\underline{y}} \sin d = tg \Psi F \mathcal{E} \sin d + tg \mathcal{O} F Z_1 \sin d$, (5) $-N_{\underline{y}} \sin d = -tg \Psi F \mathcal{E} \sin d - tg \mathcal{O} F Z_3 \sin d$.

где & берется по формуле (3).

Если стержень работает на участке [],
уравнения проекций усилий на горизонтальную и вертикальную оси аналогичны
(5), в формулах вместо Z, оказывается Z, и знаки увсех уравнений изменены. Определить заранее, на каком
из участков диаграммы (1, 11 или 111)
работает стержень, нельзя. Это можно сделать только с помощью предлагаемого

Напряжение U_A в узловой точке 5 устройства (фиг. 2) с учетом того, что для блоков умножения 28 и 30 $\frac{R_0}{R}$ =2,

$$U_{A} = (U_{1} - U_{2}) \frac{g}{3(g + g_{0})} + (U_{3} - U_{4}) \frac{g_{0}}{3(g + g_{0})}$$

Если потенциал узловой точки 5 станет равным e, $U_A = e$. (7)

Пусть

устройства.

$$q_3 = 2g + G + \frac{G}{2}$$
, $q_5 = 2g_0 + G + \frac{G}{2}$, $q_4 = g + G + \frac{G}{2}$, $q_6 = q_0 + G + \frac{G}{2}$. (8)

Тогда: схема характеризуется следующими уравнениями электрического тока.

25

если потенциал узловой точки 5 не достиг е и определяется по (6):

$$I_{11} = g_{1}(U_{1}-U_{2}) + G(U_{3}-U_{4}) + U_{A}g,$$

$$I_{21} = -g_{1}(U_{1}-U_{2}) - G(U_{3}-U_{4}) - U_{A}g,$$

$$I_{31} = G(U_{1}-U_{2}) + g_{1}(U_{3}-U_{4}) + U_{A}go,$$

$$I_{41} = -G(U_{1}-U_{2}) - g_{2}(U_{3}-U_{4}) - U_{A}go.$$
(9)

где V_{A} берется из выражения (6).

Если потенциал U_A узловой точки 5 становится равным величине ε источника опорного напряжения 38,

$$I_{11} = g_1(U_1 - U_2) + G_1(U_3 - U_4) + e g,$$

$$I_{21} = -g_1(U_1 - U_2) - G_1(U_3 - U_4) - e g,$$

$$I_{31} = G_1(U_1 - U_2) + g_1(U_3 - U_4) + e g_0,$$

$$I_{41} = -G_1(U_1 - U_2) - g_2(U_3 - U_4) - e g_0.$$
(10)

Если потенциал узловой точки 5 становится равным e_4 источника опорного напряжения 39, схема определяется уравнениями, аналогичными (10), но с противоположными знаками.

Из сравнения выражений (4) и₁(9), (5) и (10), видно, что они аналогичны,

$$I_{1j} = j_{i}N_{j}\cos d, j = I_{i}\overline{u}_{i}.\overline{u}_{i}.I_{2j} = y_{i}(-N_{j}\cos d),$$

$$I_{3j} = y_{i}N_{j}\sin d, \qquad I_{uj} = y_{i}(-N_{j}\sin d),$$

$$U_{1} = y_{u} \cdot x_{i}, \qquad U_{2} = y_{u} \cdot x_{k},$$

$$U_{3} = y_{u} \cdot y_{i}, \qquad V_{4} = y_{u} \cdot y_{k}.$$

$$g_{1} = K \frac{tg\psi \cdot F}{\ell} \cos^{2}d, \quad g_{1} = K \frac{tg\psi \cdot F}{\ell} \sin^{2}d,$$

$$G = K \frac{tg\psi \cdot F}{\ell} \cdot \cos d \sin d,$$

$$g = 3(\cos^{2}d + \sin d \cos d) tg \theta \frac{F}{\ell} K,$$

$$g_{0} = g tgd = 3(\sin d \cdot \cos d) tg \theta \frac{F}{\ell} K,$$

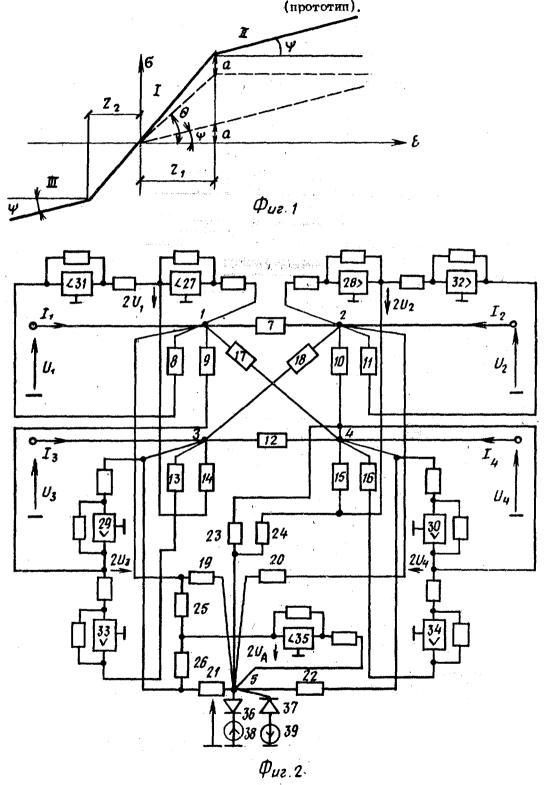
$$\ell = \frac{y_{1}z_{1}\ell}{3(\cos d + \sin d)}; \quad \ell_{1} = \frac{g_{1}z_{2}\ell}{3(\cos d + \sin d)}.$$

$$(11)$$

где Хі, Хи, К - масштабные коэффициенты токов, напряжений и проводимостей.

Проводимости q_3 - q_6 подсчитываются по формуле (8).

Таким образом, на четырех полюсах устройства отрабатываются напряжения, эквивалентные горизонтальным и вертикальным перемещениям концов стержня фермы, и токи, аналогичные горизонтальным и вертикальным проекциям усилия в стержне с учетом работы материала стержня на трех участках. Переход с одного участка на другой происходит плавно, без электромеханических переключений.


При электромоделировании фермы модели стержней соединяют по геометрической схеме фермы с целью реализации уравнений равновесия в узлах (суммы проекций на горизонтальную и вертикальную оси). На каждый узел фермы при любом числе стержней, сходящихся в узле, необходимо только четыре усилителя (два удвоителя и два инвертора напряжения). Кроме того, на каждый стержень фермы необходимо еще по одному усилителю. Внешняя нагрузка, прикладываемая в узлах фермы, моделируется источниками тока, включаемыми в узлы модели.

Таким образом, устройство позволяет решить очень сложную нелинейную задачу строительной механики, которая обычными методами, особенно для многократно статически неопределимых систем, решить нельзя.

Формула изобретения

Устройство для моделирования стержня. содержащее резисторную сетку, первая, вторая, третья и четвертая узловые точки которой соединены соответственно с цервой, второй, третьей и четвертой цепочками из последовательно соединенных блока умножения на постоянный коэффициент, инвертора и резистора, каждая из которых подключена к одноименной узловой точке, первая узловая точка резисторной сетки через соответствующие резисторы соединена со второй и четвертой узловыми точками резисторной сетки, третья узловая точка резисторной сетки через соответствующие резисторы соединена со второй и четвертой узловыми точками резисторной сетки, выходы блоков умножения первой и третьей цепочек соединены соответственно с третьей и первой узловыми точками, выходы блоков умножения второй и четвертой цепочек подключены соответственно к четвертой и ко второй узловым точкам, и источники напряжения, отличающееся тем, что, с целью расширения функциональных возможностей устройства за счет учета нелинейных характеристик материалов стержней, в него введены выпрямительные диоды, дополнительные резисторы и дополнительный блок умножения, вход которого соединен с пятой узловой точкой резисторной сетки, соответственно через выпрямительные диоды связанной с источниками напряжения и через соответствующие дополнительные резисторы - с первой, второй, третьей и четвертой узловыми точками резисторной сетки, пятая узловая точка которой через соответствующие дополнительные резисторы подключена к выходам блоков умножения второй и четвертой цепочек, выход пополнительного блока умножения подключен к шестой узловой точке резисторной сетки, через соответствующие дополнительные резисторы соединенной с первой и третьей узловыми точками. Источники информации, принятые во внимание при экспертизе

- 1. Сборник "25 Научно-техническая конференция БПИ", Материалы секции строительной механики, Минск, 1969, с. 107.
- 2. Авторское свидетельство СССР № 438022, кл. G 06 G 7/46, 1972. (прототип).

ПНИИШИ

Заказ 3952/41

Тираж 751

Подписное

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4