Динамические гасители колебаний дымовых труб

Аржаховский А.Д., Новак Р.Н. Научный руководитель – Гринев В.В. Белорусский национальный технический университет Минск, Беларусь

Ввеление

Не так давно мы наблюдали следующую картину: в одном из городов была замечена высокая труба, которая раскачивалась со стороны в сторону /3/. На улице был слышен скрип металла, так как каркас трубы — металлический. Колебания были настолько большими, что в какой-то момент казалось: вот-вот и конструкция рухнет. Нас заинтересовал этот вопрос, и мы решили узнать из-за чего происходили колебания конструкция.

По информации из открытых источников в интернете, мы узнали, что шла плановая замена гасителей колебаний на выхлопной трубе рис. 1, так как с течением времени гасители колебаний износились.

Рис.1. Динамический гаситель колебаний (фотография, не относящаяся к объекту)

Нас очень заинтересовала это тема (динамические гасители колебаний дымовых труб) и мы решили выполнить по ней научную работу.

Динамические гасители

Динамический гаситель в простейшем исполнении представляет собой массу на пружине, с помощью которой он крепится к объекту защиты /1, 2/. Динамический гаситель был изобретен Фрамом в 1909 г. Динамические гасители колебаний считают одним из наиболее эффективных пассивных виброзащитных средств, способных подавлять установившиеся вынужденные колебания механизмов и конструкций при моногармоническом возмущении.

Динамическим гасителем колебаний называется устройство, состоящее из сравнительно жесткого элемента, называемого далее массой, присоединенного с помощью упругой связи (или связи, соединенной параллельно с демпфирующим элементом) к защищаемой конструкции. Параметры гасителя - масса, квазиупругий коэффициент и коэффициент демпфирования - определяются в результате расчета или назначаются по конструктивным соображениям. Если парциальная частота гасителя близка к частоте вынужденных колебаний конструкции, то масса гасителя совершает колебания, амплитуда которых, как правило, значительно превышает амплитуду колебаний конструкции. Возникающие при этом упругие и диссипативные силы в элементах гасителя, воздействуя на защищаемую конструкцию, уменьшают ее колебания.

Динамические гасители колебаний в зависимости от конструктивной схемы делятся <u>на три группы</u>: гасители с гибким элементом (пружинные), маятниковые и комбинированные гасители.

Принципиальная схема гасителя, состоящего из "массы", квазиупругого элемента и демпфирующего устройства во всех указанных трех случаях одинакова. "Масса" представляет, как правило, призматический или цилиндрический стальной или чугунный груз. В отдельных случаях возможно применение железобетонных грузов.

Пружинный гаситель содержит упругий элемент в виде стальной пружины, системы стальных пружин или специальных резин.

Для гашения горизонтальных колебаний дымовых труб и башенных сооружений рекомендуется использовать успешно применяемые на практике гасители маятникового типа, принципиальная схема такого гасителя изображена на рис.1. Маятниковые гасители следует применять в основном при гашении низкочастотных колебаний с частотой 1-3 Гц.

Рис.2. Схема маятникового гасителя

Для виброгашения зданий часто оказывается целесообразным использование схемы гасителя колебаний, разработанного в Уральском Промстройниипроекте (рис.2); такие гасители позволяют одновременно гасить как горизонтальные, так и вертикальные колебания.

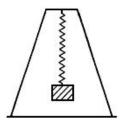


Рис.3. Схема гасителя конструкции Уралпромниипроекта

По характеру зависимости реакции гасителя от амплитуд колебаний следует различать *линейные и нелинейные* динамические гасители. В основном рассматриваются линейные гасители, которые применяются значительно чаще. Принципиальная схема линейного гасителя изображена на рис.3.

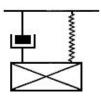


Рис.4. Схема гасителя с демпфером вязкого трения

Диссипативные свойства гасителя могут быть обусловлены не только наличием демпфера вязкого трения, как показано на рис.3, но и большим внутренним неупругим сопротивлением пружины или иной связи.

Гасители могут использоваться для различных целей, например для уменьшения амплитуд колебаний или ускорений перекрытий в связи с необходимостью удовлетворения требованиям санитарных норм, для уменьшения амплитуд внутренних усилий в конструкциях исходя из требований прочности и повышения належности

В зависимости от цели применения гасителей и от характера внешнего воздействия устанавливается критерий качества виброгашения, по степени уменьшения которого можно судить об эффективности гасителей. Эффективность гашения колебаний следует определять для гасителей с оптимальными параметрами.

Классификация расчетных случаев и назначение критерия качества виброгашения зависят от характера внешнего воздействия. Необходимо различать следующие воздействия.

Гармоническое воздействие с мало (до $\pm 5\%$) изменяющейся частотой. Источником такого воздействия может быть, например, синхронный электродвигатель. Для борьбы с возникающими при этом вибрациями могут быть использованы гасители без дополнительных демпфирующих элементов. Диссипативные свойства таких гасителей обычно не учитываются.

Гармоническое воздействие с нестабильной частотой. Источником такого воздействия могут быть, например, асинхронные электродвигатели и другие двигатели с изменяющимся числом оборотов. Применение гасителей без демпфирования в подобных случаях не дает эффекта.

Присоединяя такие гасители, можно несколько изменить собственные частоты, обычно вместо резонансной собственной частоты p возникают две близкие (отличающиеся менее, чем на 15-

20%)собственные частоты системы с гасителем p_{01} , p_{02} , причем $p_{01} . Такой раздвижки оказывается недостаточно, чтобы собственные частоты оказались вне пределов диапазона изменения частоты воздействия, поэтому резонанс возникает, но лишь на других частотах. В подобных случаях следует использовать гасители с повышенными диссипативными свойствами либо применять систему виброзащиты в виде большого числа по-разному настроенных гасителей. В настоящем выпуске даны в основном рекомендации по подбору гасителей с демпфированием.$

Периодические импульсные воздействияи нагрузки при прохождении через резонанс по своему характеру близки к гармоническому воздействию с нестабильной частотой. В этих случаях необходимо применять гасители с демпфированием.

Воздействие ветра может возбудить автоколебания типа "ветровой резонанс" или "галопирование", а также вызвать стационарные случайные колебания от пульсаций ветрового напора. Во всех этих случаях должны использоваться гасители с повышенными диссипативными свойствами, так как пульсации ветра представляют собой воздействие с широким спектром частот, а в режиме автоколебаний диапазон резонансно-опасных частот не ограничен, по крайней мере, снизу (если при некоторой критической скорости ветра, соответствующей p, возбуждаются автоколебания, то при меньшей критической скорости ветра, соответствующей p_{01} , тоже будут возбуждаться автоколебания).

При проектировании гасителей следует учитывать, что в процессе эксплуатации сооружения возможно изменение массы и других характеристик, влияющих на собственные частоты сооружения, в частности, при нестабильной частоте гармонического воздействия гаситель без демпфирования может оказаться неэффективным, если масса конструкции будет существенно изменяться.

Заключение

Динамические гасители колебаний могут применяться как для снижения расчетных сейсмических нагрузок на несущие конструкции зданий, так и для повышения надежности особо ответственных зданий, при этом расчетные нагрузки на такие здания не снижаются. Для здания повышенной этажности с металлическим каркасом в случае применения гасителя расчетная горизонтальная сейсмическая нагрузка на здание может быть снижена на балл, а для зданий с железобетонным каркасом соответственно на половину балла. Применение гасителей для высоких зданий в сейсмических районах оправдано еще и тем, что один и тот же. гаситель снижает реакцию здания как на сейсмическое воздействие, так и на ветровое.

Динамические гасители колебаний могут применяться как самостоятельная система сейсмозащиты, так и в сочетании с другими системами активной сейсмозащиты. В первом случае гасители колебаний рекомендуется применять преимущественно для зданий с расчетной сейсмичностью 7 баллов.

К недостаткам сейсмозащиты зданий с помощью динамических гасителей следует отнести относительную сложность конструкций гасителей колебаний и невозможность их применения для массового строительства из-за необходимости индивидуальной настройки гасителя для каждого конкретного здания.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Электронный ресурс. http://docs.cntd.ru/document/1200074917
- 2. Электронный pecypc .http://www.arhplan.ru/buildings/seismic/system-shock-absorber
- 3. https://www.youtube.com/watch?v=cIrnxMHHJiO