
Сравнение методик проверки общей устойчивости балок с использованием СНиП 2-23-81* и ТКП EN 1993-1-1-2009 при изгибно-крутильной форме потери устойчивости

Хаютин Л.Е., Веремейчик А.О. Научный руководитель – Давыдов Е.Ю. Белорусский национальный технический университет, Минск, Беларусь.

1. Введение

С 01.01.2010 на территории РБ действует альтернативная система нормативных документов, касающаяся расчета строительных конструкций. Ее структура может быть представлена в виде следующей схемы:

В свою очередь каждый из Еврокодов разбит на некоторое количество документов. Еврокод 3 включает в себя 10 документов. Проверка общей устойчивости при изгибно-крутильной форме потери устойчивости ведется в соответствии с ТКП EN 1993-1-1–2009 «Еврокод 3. Проектирование стальных конструкций. Часть 1-1. Общие правила и правила для зданий». Этот документ является идентичным европейскому стандарту EN 1993-1-1:2009 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. Национальная редакция каждого документа Еврокода включает полный текст Еврокода, а также национальное приложение, которое актуализирует нормативный документ по вопросам технологии ведения строительных работ, климатическим особенностям, применяемым в строительстве материалам, изделиям, конструкциям.

Переход к европейским стандартам в области строительства является важным для нашего государства как в экономическом, так и политическом смысле. Этот шаг позволит беспрепятственно производить проектные работы иностранных фирм на территории РБ и в свою очередь производить проектирование строительных конструкций нашими специалистами на территории EC.

Кроме отмеченных выше положительных сторон ввода европейских норм на территории РБ, существуют и отрицательные стороны. Одной из таких сторон является то, что, как говорят многие специалисты, Еврокод не способен охватить все вопросы проектирования строительных конструкций. Вторая проблема заключается в экономичности продукции, получаемой на основании европейских норм. Целью настоящей работы является сравнение методики проверки общей устойчивости балок с использованием СНиП 2-23-81* и ТКП ЕN 1993-1-1-2009, что косвенно характеризует экономичность проектируемой строительной продукции. Вторая задача — указать на проблемные места в обоих документах касательно проверки общей устойчивости балок перекрытия.

2. Сравнение методик проверки общей устойчивости балок

С использованием ТКП EN 1993-1-1-2009

$$M_{b,Rd} = \chi_{LT} W_y * \frac{f_y}{\gamma_{M1}}, \tag{1}$$

где W_y — по условию поставленной задачи принимается как момент сопротивления для поперечных сечений класса 3;

χ_{LT} — понижающий коэффициент при потере устойчивости плоской формы изгиба;

f_у — расчетное сопротивление стали (предел текучести);

γM1 — частный коэффициент безопасности при определении несущей способности элемента по устойчивости (принимается равным 1).

Понижающий коэффициент χLT определяется при помощи кривых потери устойчивости с использованием условной гибкости λ. С учетом использования в расчетах прокатных балок двутаврового сечения марок 60Б1-100Б1 и аналогичных им по геометрическим размерам составных балок, изготовленных из стали C235, за расчетные кривые потери устойчивости принимаем В для прокатных профилей и С для составных, согласно строке (3) пункта 6.3.1.4 (рис.1).

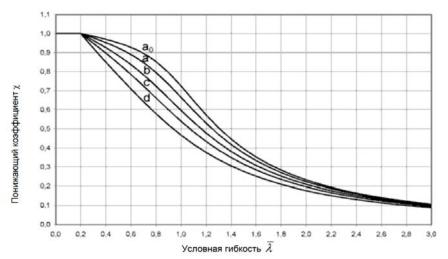


Рисунок 1. Кривые потери устойчивости

Условная гибкость:

$$\overline{\lambda}_{LT} = \sqrt{\frac{W_y f_y}{M_{cr}}} \tag{2}$$

где W_y — момент сопротивления элемента;

М_{сг} — критический момент потери устойчивости плоской формы изгиба в упругой стадии;

f_y — расчетное сопротивление стали.

Критический момент потери устойчивости по изгибно-крутильной форме (потеря плоской формы изгиба) элемента симметричного сечения, изгибаемого в плоскости симметрии можно определить по формуле:

$$Mcr = C_1 \frac{\Pi^2 E I_z}{(k_z L)^2} \left(\sqrt{\left(\frac{k_z}{k_w}\right)^2} \frac{I_w}{I_z} + \frac{(k_z L)^2 G I_t}{\Pi^2 E I_z} + (C_2 z_g)^2 - C_2 z_g \right),$$
(3)

где L — расстояние между точками элемента, в которых он раскреплен от бокового смещения;

 C_1 , C_2 — коэффициенты, зависящие от внешней нагрузки, действующей на элемент, и условия раскрепления концов элемента;

 k_z — коэффициент, учитывающий условия закрепления концов элемента от поворота относительно оси z-z;

k_w — коэффициент, учитывающий условия закрепления концов элемента от депланации;

 $z_{\rm g} = z_{\rm a}$ - $z_{\rm s}$ — координата точки приложения внешней нагрузки относительно центра сдвига (изгиба) сечения;

z_а — координата точки приложения внешней нагрузки относительно центра тяжести сечения;

Коэффициенты, учитывающие условия закрепления концов элемента k_z и k_w могут быть приняты 0.5 при раскреплении концов элемента.

С использованием СНиП 2-23-81*

Расчет на устойчивость балок двутаврового сечения, изгибаемых в плоскости стенки следует выполнять по формуле:

$$\frac{M}{\varphi_b W_c} \le R_y \gamma_c \tag{4}$$

где W_c — следует определять для сжатого пояса;

φ_b — коэффициент, определяемый по приложению 7*;

R_у — расчетное сопротивление стали.

При определении значения ϕ_b за расчетную длину балки следует принимать расстояние между точками закреплений сжатого пояса от поперечных смещений.

Согласно приложению 7*, для балок двутаврового сечения с двумя осями симметрии для определения коэффициента ϕ_1 по формуле:

$$\varphi_1 = \psi \frac{J_y}{J_x} (\frac{h}{l_{ef}}) \frac{E}{R_y} \tag{5}$$

где значения ψ следует принимать по таблицам 77 и 78* в зависимости от характера нагрузки и параметра α , который должен вычисляться по формулам:

а) Для прокатных двутавров:

$$\alpha = 1.54 \frac{J_t}{J_y} \left(\frac{l_{ef}}{h}\right)^2 \tag{6}$$

где l_{ef} - расчетная длина балки или консоли;

h - полная высота сечения;

 J_t - момент инерции сечения при кручении.

б) Для сварных двутавров, составленных из трех листов:

$$\alpha = 8 \left(\frac{l_{ef} t_1}{h b_f} \right)^2 \left(1 + \frac{a t^3}{b_f t_1^3} \right) \tag{7}$$

где t — толщина стенки;

 b_f , t_1 — ширина и толщина пояса балки;

h — расстояние между осями поясов;

а — размер, равный 0,5h.

По условию закрепления балки и приложения нагрузки, коэффициент ψ вычисляется по формуле:

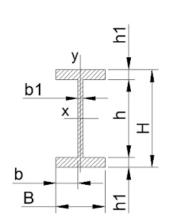
$$\psi = 1,75 + 0,09\alpha \tag{8}$$

Значение коэффициента фь необходимо принимать:

при $\phi_1 \le 0.85$ $\phi_b = \phi_1$; при $\phi_b > 0.85$ $\phi_b = 0.68 + 0.21 \phi_1$, но не более 1.0.

3. Результаты вычислений

Таблица 1


Номер двутавра	Значения по Еврокоду		Значения по СНиП		Разница значений,			
	χlt	Мсг, кНм	φb	Мсг, кНм	%			
Прокатные								
60Б1	0,360	220	0,434	265	17			
70Б1	0,380	319	0,466	390	18			

80Б1	0,400	464	0,503	584	20		
90Б1	0,415	659	0,542	850	22		
100Б1	0,455	943	0,608	1260	25		
Составные							
1*	0,350	214	0,489	299	28		
2*	0,385	446	0,552	640	30		
3*	0,425	879	0,652	1347	34		

Расчетная схема балки:

Размеры составных двутавров, применяемых в расчетах:

$$1*$$
: H=592мм, h=560мм, h_1 =16мм, B=230мм, b_1 =12мм

$$2*: H=786MM, h=750MM, h_1=18MM, B=280MM, b_1=14MM$$

$$3*: H=994$$
MM, $h=950$ MM, $h_1=22$ MM, $B=320$ MM, $h_1=16$ MM

Размеры составных двутавров были подобраны для приблизительного соответствия прокатным двутаврам 60Б1, 80Б1, 100Б1.

4. Преимущества и недостатки представленных методов

1) <u>TKΠ EN 1993-1-1-2009</u>

Процесс расчетов по ТКП EN существенно облегчает использование кривых потери устойчивости. Например, в пункте 6.3.2.2 "Кривые потери устойчивости плоской формы изгиба. Общий случай" использование данного графика при известной условной гибкости позволяет пропустить применение достаточно объемной и трудоемкой для вычисления формулы 6.56. Однако, в свою очередь, использование данных кривых сопряжено с низкой точностью определения значений понижающего коэффициента χ_{LT} из-за использования графического метода.

Также к недостаткам ТКП EN можно отнести большое количество коэффициентов, не имеющих сносок на источники и пояснения. К примерам можно отнести k_z и k_w - которые были приняты равными 0.5 исключительно с учетом предоставленной рекомендации.

Существенной деталью является разделение на сварные и прокатные профили с использованием кривой потери устойчивости С, что существенно снижает конечный результат критического момента потери устойчивости. Обоснованность данного действия достаточно сомнительна.

Подытоживая, графический способ определения понижающего коэффициента можно отнести как к плюсам, за счет простоты, так и к минусам, за счет низкой точности, использования ТКП EN. Также слабой стороной является наличие неточных формулировок и отсутствующие ссылки на различные значения.

2) <u>СНиП 2-23-81*</u>

К преимуществам использования СНиП для решения поставленной задачи можно отнести простоту поиска необходимых данных для расчета, который, в свою очередь, осложнен наличием большого числа корректирующих коэффициентов. Так, в формуле (4) вычисление неизвестного коэффициента ϕ_b сводится к последовательному расчету трёх коэффициентов ϕ_1 ; α ; ψ .

Разница в расчете составных и прокатных профилей в СНиП заключается в вычислении коэффициента α. Причем, в отличии от ТКП EN, тут выделяется различие не только между прокатными и составными профилями, но и присутствует более глубокое разделение составных профилей на сварные балки, и балки с поясными соединениями на высокопрочных болтах. Отсутствие этого типа соединений в ТКП EN является еще одним недостатком.

В целом же результаты вычислений показывают, что с возрастанием номера двутавра увеличивается различие в вычислениях по двум нормативным документам, что особенно ярко выражается на примере составного двутавра 3*, для которого разница критических моментов потери устойчивости составила 34%.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Стрелецкий Н. С. Конструкции пролетных строений мостов. Металлические конструкции. Специальный курс.
- 2. СНиП 2-23-81*.
- 3. ТКП EN 1993-1-1-2009.
- 4. EN 1993-1-1 Eurocode 3: Design of steel structures Part 1-1: General rules and rules for buildings