Союз Советских Социалистических Республик

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е (11)700562 ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (61) Дополнительное к авт. свид-ву -
- (22) Заявлено **16.06.7**8 (21) **2630597/22-02** с присоединением заявки № —
- (23) Приоритет —
- (43) Опубликовано 30.11.79. Бюллетень № 44
- (45) Дата опубликования описания 30.11.79

(51) М. Кл.² С 23С 9/02

(53) УДК **621.785.51. .06(088.8)**

- (72) Авторы изобретения Л. Г. Ворошнин, Б. С. Кухарев, Н. Г. Кухарева, С. Н. Левитан, А. Ю. Хаппалаев и И. А. Хотько
- (71) Заявитель

Белорусский ордена Трудового Красного Знамени политехнический институт

(54) ПОРОШКООБРАЗНЫЙ СОСТАВ ДЛЯ ДИФФУЗИОННОГО ХРОМИРОВАНИЯ ДЕТАЛЕЙ ИЗ СРЕДНЕ-И ВЫСОКОУГЛЕРОДИСТЫХ СТАЛЕЙ

1

Изобретение касается химико-термической обработки железоуглеродистых сплавов (С≥0,45%) в порошковых насыщающих средах, в частности диффузионного хромирования, и может быть использовано в машиностроительной, металлургической и приборостроительной промышленности.

Известно диффузионное хромирование стали У8 с использованием порошковой среды, содержащей, мас. %: 70Cr+29Al₂O₃+ +1NH₄Cl, в течение 6—12 ч при 1000—1050°C, которое позволяет получать карбидные хромовые слои толщиной 10—30 мкм [1].

Известен состав для диффузионного ₁₅ хромирования, мас. %:

 $52CrO_3 + 18A1 + 27A1_2O_3 + 3NH_4C1$ [2].

Процесс осуществляют при $1000-1100^{\circ}$ С в течение 4-8 ч. В результате термодиффузионной обработки в известном составе поверхностная твердость средне- и высокоуглеродистых сталей (С \geqslant 0,45%) возрастает с 600-650 кгс/мм² до 1600-1800 кгс/мм². Износостойкость упрочненного материала при этом увеличивается в 3-4 раза. Значительно возрастают показатели жаростойкости диффузионно-хромированных изделий.

2

Однако использование известного состава не позволяет получать диффузионные хромовые карбидные слои толщиной выше 20—30 мкм.

Цель изобрегения — увеличение толщины хромового карбидного слоя.

Для достижения указанной цели в предлагаемый состав, содержащий окись хрома, окись алюминия, порошок алюминия, хлористый аммоний, дополнительно вводятся порошки железа и сурьмы при следующем соотношении компонентов насыщающей смеси, вес. %:

Порошок железа	921
Порошок сурьмы	9-21
Порошок алюминия	8—12
Окись хрома	30—34
Хлористый аммоний	1—3
Окись алюминия	25—27

Пример 1. Хромирование в предлагаемой порошковой среде осуществляют в контейнерах с плавкими затворами при 1050°С с выдержкой 6 ч. При этом формируется диффузионный карбидный слой, состоящий из карбидов, хрома типа (Cr, Fe) и (Cr, Fe) ${}_{23}$ С7, глубиной 40—60 мкм.

Влияние состава насыщающей среды на результаты обработки представлены в таблице.

очняе- ый ериал	t, °C	τ, ч	Глубина слоя, мкм
v8	1050	6	90
V8 I	1050	1 6	
· `	1000	"	20
У8	1050	6	100
78	1050	6	60
78 J	1050	6	40
	/8 /8 /8	78 1050	78 1050 6

10

Из приведенных данных следует, что хромирование с использованием предлагаемого состава позволяет увеличить толщину карбидного хромового слоя в 2—5 раза по сравнению с толщиной карбидного слоя, получаемого при использовании известного состава. Это значительно расширяет возможные области использования изделий с диффузионными хромовыми карбидными слоями.

Формула изобретения

Порошкообразный состав для диффузионного хромирования деталей из средне- и высокоуглеродистых сталей, содержащий 15 окись алюминия, окись хрома, хлористый аммоний и алюминий, отличающийся

тем, что, с целью увеличения толщины хромового карбидного слоя, он дополнительно содержит железо и сурьму при следующем соотношении компонентов. вес. %:

commonement nominomentos,	DCC.	70 -
Окись хрома		30-34
Алюминий		8-12
Сурьма		9-21
Железо		921
Хлористый аммоний		1—3
Окись алюминия		25 - 27

Источники информации, принятые вс внимание при экспертизе

1. Минкевич А. Н. Химико-термическая обработка металлов и сплавов. М., «Машиностроение», 1965, с. 185.

2. Борисенок Г. В. и др. Сб. «Металлургия», вып. 8, Минск, 1976, с. 26—29.

Составитель Л. Бурлинова

 Редактор
 3. Ходакова
 Техред
 А. Камышникова
 Корректор
 Р. Беркович

 Заказ
 2655/9
 Изд. № 658
 Тираж
 1139
 Подписное

 НПО «Поиск»
 Государственного комитета
 СССР по делам изобретений и открытий
 и открытий

 113035
 Москва, Ж-35
 Раушская наб., д. 4/5

Типография, пр. Сапунова, 2