БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ энергетический КАФЕДРА Тепловые электрические станции

допущ	EH K 3AI	ЦИТЕ
Заведую́ї	ций кафед	дрой
1/1/	Н.Б. Ка	арницкий
" <i>9</i> "	er	2020 г

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА ДИПЛОМНОГО ПРОЕКТА

Проект дубль-блочной АЭС мощностью 1000 MBт с тихоходными турбоустановками

Специальность 1-43 01 08 Паротурбинные установки атомных электрических станций

Обучающийся группы 10608115	подпись, дата	В.А. Тихиня
Руководитель	22 05 2020 подпись, дата	В.В. Сорокин д.т.н., профессор
Консультанты:		
по разделу «Экономическая часть»	Мал 08.04.20 подпись, дата	В.Н. Нагорнов к.э.н., доцент
по разделу «Водно-химический комплекс АЭС	С» <u>Явер 19052</u> 0 г	В.А. Чиж к.т.н., доцент
по разделу «Автоматизация технологических процессов и АСУ АЭС»	подпись, дата	Г.Т. Кулаков д.т.н., профессор
по разделу «Электрическая часть АЭС»	подпись, дата	Я.В. Потачиц ст. преподаватель
по разделу «Охрана окружающей среды»	30.03.2000 подпись, дата	Н.Б. Карницкий д.т.н., профессор
по разделу «Охрана труда»	Подпись дата Тель 20.08.20	Л.П. Филянович к.т.н., доцент
Ответственный за нормоконтроль	Пере 20.08.20 подпись, дата	Е.В. Пронкевич ст. преподаватель
Объем проекта: Расчетно-пояснительная записка — 193 странграфическая часть — 11 листов; магнитные (цифровые) носители — един		

РЕФЕРАТ

Дипломный проект: 193 страницы, 69 рисунков, 43 таблицы, 44 источника. АЭС МОЩНОСТЬЮ 1000 МВТ, РЕАКТОР ВВЭР-1000, ТЕПЛОВАЯ СХЕМА, ТУРБОУСТАНОВКИ К-500-60/1500, ПАРОГЕНЕРАТОР ПГВ-1000, УСТРОЙСТВО ЛОКАЛИЗАЦИИ РАСПЛАВА.

Объектом разработки является проект дубль-блочной АЭС мощностью 1000 МВт в Республике Беларусь. Проектируется двухконтурная АЭС с реактором ВВЭР-1000 и двумя турбоустановками К-500-60/1500 работающими на насыщенном паре, производимом парогенераторами типа ПГВ-1000.

Целью дипломного проекта является изучение всех этапов строительства атомной станции: экономического обоснования строительства, выбора основного и вспомогательного оборудования тепловой и электрической частей станции, выбора топливного хозяйства, системы технического водоснабжения и водно-химического режима станции, вопросов автоматизации технологических процессов, вопросов охраны труда и охраны окружающей среды, принципов компоновки главного корпуса и разработки генерального плана АЭС.

В процессе проектирования были разработаны следующие вопросы и произведены данные расчеты: обоснование строительства станции с выбором основного оборудования, расчет принципиальной тепловой схемы блока и теплогидравлический расчет парогенератора, выбор вспомогательного оборудования тепловой части, расчет токов короткого замыкания и выбор электрических аппаратов, разработка автоматизации технологических процессов и АСУ АЭС, расчет технико-экономических показателей проекта, а в качестве специального задания рассмотрено устройство локализации расплава.

Приведенный в дипломном проекте расчетно-аналитический материал объективно отражает состояние исследуемого объекта, все заимствованные из литературных источников вопросы и материалы сопровождаются ссылками на их авторов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Тепловые и атомные электростанции: справочник / Под общ. ред. А. В. Клименко, В. М. Зорина. 3-е изд., перераб. и доп. М.: Издательство МЭИ, 2003. Кн. 3. 648 с.
- 2. Основные показатели [Электронный ресурс] / Государственное производственное объединение электроэнергетики «Белэнерго». Минск, 2020. Режим доступа: http://www.energo.by/content/deyatelnost-obedineniya/osnovnye-pokazateli/. Дата доступа: 25.03.2020.
- 3. Нагорнов, В. Н. Экономика и организация ядерной энергетики: пособие для студентов специальности 1-43 01 08 «Паротурбинные установки атомных электрических станций» / В. Н. Нагорнов. Минск: БНТУ, 2019. 59 с.
- 4. Эксплуатационные режимы водо-водяных энергетических реакторов паротурбинная установка ВВЭР-1000 [Электронный ресурс]. Режим доступа: https://leg.co.ua/arhiv/generaciya/ekspluatacionnye-rezhimy-vodo-vodyanyh-energeticheskih-reaktorov-33.html. Дата доступа: 20.03.2020.
- 5. Седнин, А. В. Атомные электрические станции. Курсовое проектирование: учеб. пособие / А. В. Седнин, Н. Б. Карницкий, М. Л. Богданович. Минск: Вышэйшая школа, 2010. 150 с.
- 6. Сорокин, В. В. Парогенераторы атомных электрических станций: метод. указания по выполнению курсового проекта для студентов специальности 1-43 01 08 «Паротурбинные установки атомных электрических станций» / В. В. Сорокин, Н. Б. Карницкий. Минск: БНТУ, 2013. 72 с.
- 7. Зверков, В. В. Эксплуатация ядерного топлива на АЭС с ВВЭР / В. В. Зверков. М.: Энергоатомиздат, 1989. 96 с.
- 8. Чиж, В. А. Водоподготовка и водно-химические режимы ТЭС и АЭС: учеб. пособие / В. А. Чиж, Н. Б. Карницкий, А. В. Нерезько Минск: Вышэйшая школа, 2010. 351 с.
- 9. Чиж, В. А. Водоподготовка и водно-химические режимы ТЭС и АЭС: учеб.-метод. пособие по курсовому и дипломному проектированию / В. А. Чиж [и др.]. Минск: БНТУ, 2015. 105 с.
- 10. Мировые водные технологии [Электронный ресурс]. Режим доступа: http://wwtec.ru/index.php?id=30. Дата доступа: 10.04.2020.
- 11. Основы водоподготовки [Электронный ресурс]. Режим доступа: http://www.hydrotech.ru/index.php?option=com_content&task=view&id=6&Itemid=7. Дата доступа: 10.04.2020.
- 12. Системы непрерывной электродеионизации IONPURE в Минске [Электронный ресурс]. Режим доступа: https://minsk.water.ru/catalog/el-di.php?cityyes=1. Дата доступа: 11.04.2020.

- 13. Неклепаев, Б. Н. Электрическая часть электростанций и подстанций: справочные материалы для курсового и дипломного проектирования: учеб. пособие для вузов / Б. Н. Неклепаев, И. П. Крючков. 4-е изд., перераб. и доп. М.: Энергоатомиздат, 1989. 608 с.
- 14. Рожкова, Л. Д. Электрооборудование электрических станций и подстанций: учебник для сред. проф. образования / Л. Д. Рожкова, Л. К. Корнеева, Т. В. Чиркова. М.: Издательский дом «Академия», 2004. 448 с.
- 15. Плетнев, Γ . П. Автоматизация технологических процессов и производств в теплоэнергетике: учебник для студентов вузов / Γ . П. Плетнев. М.: МЭИ, 2016. 352 с.
- 16. Кузьмицкий, И. Ф. Теория автоматического управления: учеб. пособие для студентов специальности «Автоматизация технологических процессов и производств» / И. Ф. Кузьмицкий, Г. Т. Кулаков. Минск, БГТУ, 2010. 574 с.
- 17. Автоматическое управление и защита теплоэнергетических установок АЭС регулирование энергоблоков с ВВЭР [Электронный ресурс]. Режим доступа: https://leg.co.ua/arhiv/generaciya/avtomaticheskoe-upravlenie-i-zaschitateploenergeticheskih-ustanovok-aes-31.html. Дата доступа: 07.04.2020.
- 18. Системы автоматического управления / Г. Т. Кулаков [и др.]; под общ. ред. Г. Т. Кулакова Минск: БНТУ, 2017. 133 с.
- 19. Создание и внедрение систем контроля и управления водно-химическим режимом (СКУ ВХР) для АЭС с ВВЭР важное направление повышения их эксплуатационной надежности и безопасности [Электронный ресурс]. Режим доступа: https://pandia.ru/text/78/287/34842.php. Дата доступа: 08.04.2020.
- 20. Лобанок, О. И. Автоматизированный химический контроль в новых проектах энергоблоков АЭС / О. И. Лобанок, М. В. Федосеев // Теплоэнергетика. 2013. №7. С. 17-20.
- 21. Преловский, А. Р. Основные подходы к созданию химических лабораторий на объектах атомной энергетики / А. Р. Преловский // Водоочистка. Водоподготовка. Водоснабжение. 2012. №7. С. 66-71.
- 22. Скачек, М. А. Обращение с отработавшим ядерным топливом и радиоактивными отходами АЭС: учеб. пособие для вузов / М. А. Скачек. М.: Издательский дом МЭИ, 2007. 448 с.
- 23. Лазаренков, А. М. Охрана труда в энергетической отрасли / А. М. Лазаренков, Л. П. Филянович. Минск: ИВЦ Минфина, 2010. 655 с.
- 24. Бескрестнов, Н. В. Охрана труда на атомных станциях: учеб. пособие для энерг. техникумов / Н. В. Бескрестнов. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1989. 278 с.

- 25. Охрана труда в вопросах и ответах: справочное пособие: в 2 т. / В. Н. Борисов [и др.]; под общ. ред. И. И. Селедевский. 3-е изд., перераб. и доп. Минск: ЦОТЖ, 2001.
- 26. Основы теории и проектирования ядерных энергетических установок атомных электрических станций / С. Б. Тулуб [и др.]. Севастополь: СНИЯ ЭиП, 2004.-472 с.
- 27. Рыжкин, В. Я. Тепловые электрические станции / В. Я. Рыжкин. М.: Энергоатомиздат, 1987. 327 с.
- 28. Маргулова, Т. Х. Атомные электрические станции: учебник для вузов / Т. Х. Моргунова. 5-е изд. М.: ИздАТ, 1994. 360 с.
- 29. Леонков, А. М. Дипломное проектирование: Тепловые и атомные электрические станции / А. М. Леонков, А. Д. Качан Минск: Вышэйшая школа, 1983. 203 с.
- 30. Стерман, Л. С. Тепловые и атомные станции / Л. С. Стерман, С. А. Тевлин, А. Т. Шарков. М.: Энергоиздат, 1982. 456 с.
- 31. Инструкция по эксплуатации системы удержания и охлаждения расплавленной активной зоны вне реактора (JKM).
- 32. Способ и устройство локализации расплава активной зоны ядерного реактора: патент RU 2432628 / А. Я. Столяревский. Опубл. 27.10.2011. Бюл. № 30.
- 33. Лавданский, П. А. Технология, оборудование и безопасность объектов ядерной энергетики / П. А. Лавданский, С. И. Степкин. М.: МГСУ, ЭБС АСВ, 2010.-70 с.
- 34. Физические и конструкционные особенности ядерных энергетических установок с ВВЭР / С. Б. Выговский [и др.]. М.: НИЯУ МИФИ, 2011. 376 с.
- 35. Столяревский, А. Я. Атомные станции: теперь с «ловушкой» / А. Я. Столяревский // Энергия. -2002. -№ 4. C. 9-17.
- 36. Устройство для улавливания расплавленных материалов из ядерного реактора: патент RU 2163037 / А. И. Осадчий, А. Я. Столяревский. Опубл. 10.02.2001. Бюл. № 4.
- 37. Физические аспекты парового взрыва / Е. В. Степанов. М: ИАЭ, 1991. 95 с. (Препринт / Ин-т атом. энергии им. И. В. Курчатова; ИАЭ-5450/3).
- 38. Corradini M. L., Vapor explosions: a review of experiments for accident analysis / M. L. Corradini, R. P. Taleyarkhan // Nuclear Safety. − 1991. − Vol. 32, № 3. − P. 337-362.
- 39. Болобов, В. И. Условия воспламенения железа и углеродистой стали в кислороде / В. И. Болобов // Физика горения и взрыва. 2001. № 3. С. 52-57.
- 40. Kazachkov, I. V. About localization of heating in granular layer with internal heat generation / I. V. Kazachkov // Advances in Heat Transfer Engineering:

- papers from the 4th Baltic Heat Transfer Conf., Lithuania, Kaunas, 25–27 Aug. 2003. / Lithuanian Energy Institute and Kaunas Univ. of Technology; ed.: B. Sunden, J. Vilemas. Kaunas, 2009. P. 225-252.
- 41. Phenomenological Studies on Melt-Structure-Water Interactions (MSWI) during Severe Accidents: Annual Report / B. R. Sehgal, Z. L. Yang, H. O. Haraldsson [et al.]. Stockholm: Division of Nuclear Power Safety, Royal Institute of Technology, 2000. 51 p.
- 42. Асмолов, В. Г. Выбор жертвенного материала ловушки расплава для реактора ВВЭР-1000 / В. Г. Асмолов, В. Н. Загрязкин, В. Ю. Вишневский [и др.] // Исследования процессов при запроектных авариях с разрушением активной зоны: сб. трудов науч.-практ. семинара, Санкт-Петербург, 12–14 сентября 2000 г. Санкт-Петербург, 2000. С. 141-159.
- 43. Гусаров, В. В. Физико-химическое моделирование и анализ процессов взаимодействия расплава активной зоны ядерного реактора с жертвенным материалом / В. В. Гусаров, В. И. Альмяшев, В. Б. Хабенский [и др.] // Физика и химия стекла. − 2005. − Т. 31, № 1. − С. 71-90.
- 44. Минеев, В. И. Взаимодействие оксидного расплава с диоксидциркониевыми огнеупорами внешней ловушки / В. И. Минеев // Атомная энергия. – 2001. - T. 90, № 6. - C. 460-466.