Союз Советских Социалистических Республик

Государственный комитет СССР по делам изобретений и открытий

ОПИСАНИЕ (п) 870489 ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 17.12.79 (21) 2853499/22-02

с присоединением заявки 🤏 🖚

(23) Приоритет -

Опубликовано 07.10.81. Бюллетень № 37

Дата опубликования описания 10.10.81

(51) М. Кл³ С 23 С 9/02

(53) УДК 621.

.785.51.06 (088.8)

(72) Авторы изобретения Б. С. Кухарев, Г. В. Стасевич, С. Н. Левитан и Н. Г. Кухарева

(71) Заявитель

Белорусский ордена Трудового Красного Знамени политехнический институт

(54) СОСТАВ ДЛЯ БОРОАЛЮМОНИКЕЛИРОВАНИЯ СТАЛЬНЫХ ИЗДЕЛИЙ

1

Изобретение относится к химико-тер- мической обработке металлов и сплавов в порошковых насыщающих средах, в част- ности к диффузионному бороалюмоникелированию, и может быть использовано в машиностроении, металлургической и приборостроительной промышленности.

Известен состав порошковых насышаюших сред для диффузионного бороалитиро вания, содержащий ферробор, карбид бора, ферроалюминий и активаторы – буру и кло-¹⁰ ристый аммоний [1].

Наиболее близок к изобретению состав, который содержит окись апюминия, окись бора, апюминий и фтористый натрий в следующем соотношении, мас.%: $69.7 \text{ Al}_2\text{O}_3$ + $14.9 \text{ B}_2\text{O}_3$ + 14.9 Al_2 + 14.9 NaF_2 .

В результате термодиффузионной обработки стали У8 в известном составе при температуре 900°С в течение 4 ч формируется диффузионный слой толщиной не более 50 мкм.

Недостатком известного состава является его низкая насыщающая способность. 2

Повышение температуры процесса приводит к увеличению насыщающей способности состава, но при этом увеличиваются растягивающие напряжения в слое, что отрицательно сказывается на эксплуатациюнных характеристиках диффузионного слоя. Кроме того, возрастает расход электроэнергии и наблюдается повышенный износ технологической оснастки и оборудования, используемых для осуществления процесса диффузионного насыщения.

Цель изобретения - повышение насыщающей способности.

Для достижения указанной цели в известный состав, содержащий окись алюминия и фтористый натрий, дополнительно вводят одноокись никеля и серу, при следующем соотношении ингредиентов, мас.%:

Окись алюминия 43,5-47,5 Окись бора 24,5-28,5 Порошок алюминия 19,0-23,0 Фтористый натрий 0,5-1,5 Одноокись никеля Сера

3,0**-**7,0 0,5**-**1,5

Пример. Борирование осуществляют на изделиях из стали У8 и контейнерах с плавкими затворами при 900°С в течении четырех часов, Толшина диффузионных слоев, формирующихся из стали У8 при использовании известного и предлагаемого состава, приведены в таблице.

Состав насыщающей среды, мас.%	Упрочняе- мый мате- риал	Режим ХТО,		Толщина
		t°c	T 4	слоя, мкм
Известный				
69,7 Al ₂ O ₃ +14,9 B ₂ O ₃ +14,9 Al + + O,5 NaF	сталь У8	900	4	50
Предлагаемый	•		•	
47,5 Al ₂ O ₃ +24,5 B ₂ O ₃ +23,0 Al+ +1,5 NaF + 3,0 Mio + 0,5 \$	сталь У8	800	4	75
45,5 Al ₂ O ₃ +26,5 B ₂ O ₃ +21,0 Al+ +1,0 NaF+5 NiO+1,05	сталь У8	800	4	. 80
43,5 Al ₂ 0 ₃ +28,5 B ₂ 0 ₃ +19,0 Al + +0,5Naf + 7,0NiO +1,55	сталь У8	800	4	70

30

35

Из приведенных данных следует, что использование предлагаемого состава позволяет получить бороалюмоникелированные диффузионные слои, в 1,4-1,6 раза превышающие по толщине слои, получаемые при использовании известного состава.

Формула изобретения

Состав для бороалюмоникелирования стальных изделий, содержащий окись алюминия, окись бора, алюминий и фтористый натрий, от л и ч а ю щ и й с я тем, что, с целью увеличения насыщающей способ—

ности, он дополнительно содержит одноокись никеля и серу при следующем соотношении ингредиентов, мас.%:

43,5-47,5
24,5-28,5
19,0-23,0
0,5-1,5
3,0-7,0
0,5-1,5

Источники информации, принятые во внимание при экспертизе

1. Ляхович Л. С. и др. Многокомпонентные диффузионные покрытия. Минск, "Наука и техника", 1974, с. 285.

2. Там же, с. 105 (прототип).

Составитель	Γ.	Бахтинова

Редактор С. Титова Техред М.Рейвес Корректор О. Билак

Заказ 8748/28 Тираж 1051 Подписное ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4