Союз Советских Социалистических Республик

Государственный комитет СССР по делам изобретений и отпрытий

ОПИСАНИЕ (п) 947131 ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополинтельное к авт. свид-ву 🗢

(22)Занвлено 17.02.81 (21) 3249446/29-33

с присоединеннем заявки № -

(23) Приоритет -

Опубликовано 30.07.82. Бюллетень № 28

Дата опубликования описания 30.07.82

(51)М. Кл³

C 04 B 25/02

(**53) У.Д К** 691.175 (088.8)

(72) Авторы изобретения С.И. Мартынович, Н.Л. Полейко, П.И. Юхневский, А.К. Далевский, В.И. Соломатов, А.П. Пашков и Э.В. Врублевский

(71) Заявитель

Белорусский ордена Трудового Красного Знамени политехнический институт

(54) ПОЛИМЕРБЕТОННАЯ СМЕСЬ

Изобретение относится к полимерным строительным материалам, а именно, к составая полимербетонных смесей на основе фурфуролацетонового мономера.

Известна полимербетонная смесь, включающая следующие ингредиенты, мас. %:

Фурфуролацетоновый

мономер 5-7

Катализатор полимеризации

 Зации
 1~1,5

 Наполнитель
 Остальное

В качестве катализатора полимеризации используют бензолсульфокислоту [1].

Недостатком данной смеси является 15 ее малая жизнеспособность. Кроме того, использование бензолсульфокислоту про-изводится в расплавлениом виде при нагревании до 50-60°С, что технологически неудобно и резко повышает токсичность 20 производства. При этом бензолсульфокислота не полностью связывается с полимером и в определенных условиях нышелачивается из полимербетона, разрых-

2

ляя структуру и снижая прочность материала.

Наиболее близкой к предлагаемой по технической сущности и достигаемому результату является полимербетонная смесь, включающая фурфуролацетоновый мономер, катализатор полимеризации и наполнитель. В качестве катализатора применяют смесь контакта Петрова с серной кислотой в соотношении 1:1 - 2:1 [2].

Известная полимербетонная смесь имеет пониженную токсичность. Быстрое отверждение мономера приводит к образованию полимера с недостаточной степенью пространственной сшивки и к значительным внутренним напряжениям.

Цель изобретения – повышение жизнеспособности полимербетонной смеси и прочности полимербетона на сжатие и из – гиб.

Указанная цель достигается тем, что полимербетонная смесь для изделий, проходящих термообработку, включающая фурфуролацетоновый мономер, катализатор полимеризации и наполнитель, содержит в качестве катализатора полимеризации смесь концентрированной серной кислоты и фенола в соотношении 1-5:1 при следующем содержании компонентов, мас. %:

 фурфуролацетоновый мономер
 6-15

 Катализатор полимеризации
 0,24-3,75

 Наполнитель
 Остальное

Технология приготовления полимербетонной смеси следующая.

Приготавливают катализатор полимеризации. Для этого фенол обрабатывают концентрированной серной кислотой (плот- 15 ностью 1,84 г/см²). Полученную смесь применяют в качестве отвердителя или с целью увеличения эффекта жизнеспособности полимербетонной смеси нагревают до 100-200° С и выдерживают 0,5-3 ч. 20

Затем в смесителе смешивают фурфуролацетоновый мономер с отвердителем и частью наполнителя. Смесь перемешивают 2 мин и добавляют остальную часть наполнителя.

Приготовленную полимербетонную смесь укладывают в формы и после предварительной выдержки производят сухой нагрев изделий в тепловой камере с целью увеличения степени отверждения связующего.

При смешивании фенола с концентрированной серной кислотой при комнатной температуре происходит образование преимущественно орто-фенолсульфокислоты. Нагревание полученной смеси до 100-200°С
с выдержкой в течение 0,5-3 ч приводит к образованию преимущественно парафенолсульфокислоты. При комнатной температуре фенолсульфокислоты не отверкдают фурфуролацетоновый мономер, а,
наоборот, ингибируют реакцию катионной

полимеризации. Причем пара-фенолсульфокислота ингибирует полимеризацию сильнее, чем орго-фенолсульфокислота.

Как ортот так и пара-фенолсульфокиолоты способны акцептировать дополнительное количество протоков, так как фенольный кислород имеет две заполненные несвязывающие орбитали. Это приводит к
тому, что фенолсульфокислоты дезактививания водородных связей) протоны серной кислоты. В результате замедляется
реакция катионной полимеризации фурфуролацетонового мономера протонами от15 вердителя.

Орто- и пара-фенолсульфокислоты также участвуют в процессе отверждения
фурфуролацетонового мономера, так как
являются активированными под действием
резонансного взаимодействия ароматической системы с фенольным гидроксилом.
Дезактивирующее влияние сульфогрупны
на ароматическую систему перекрывается
активирующим влиянием оксигруппы. Моносульфофенолы вступают в реакцию поликонденсации с фурфуролом, содержащимся в мономере.

Это приводит к повышению прочности полимербетона и химической устойчивости полимера в щелочной среде.

В табл. 1 представлены составы предпагаемого и известного катализаторов, а в табл. 2 — составы предлагаемой и известной смесей.

Полученные свойства полимербетонной смеси и полимербетона представлены в табл. 3.

Повышение жизнеспособности полимербетонной смеси, а также прочностных показателей полимербетона позволяет формовать крупногабаритные конструкции и повышает производительность труда.

Таблица 1

Компоненты	Содержание, мас. г., в составах			
	Известном	1	2	. З
Контакт Петрова	1 .		-	
Серная кислота	1	1	5	2
Фенол	ente.	1	.1	1

Таблица 2

Компоненты	Содера	Содержание, мас. %, в составах			
	Известном	1	2	3	
Фурфуролацетоно— вый мономер	12	6	12	15	
Катализатор по- лимеризации	1,2	0,24	1,2	3,75	
Наполнитель: андеэитовая	,		•		
мука	8,6	8,0	8,6	9,0	
щебень	52	54,2	52	51	
песок	26,2	31,56	26,2	21,25	

		Таблица З		
Показатели	Известный	1	2	3
Жизнеспособность, ч	0,5	3	10	24
Предел прочности, МПа	a:			
при сжатии	70,0	90,0	115,0	120,0
при изгибе	10	12,5	13,0	13,2

Формула изобретения Полимербетонная смесь для изделий, проходящих термообработку, включающая фурфуролацетоновый мономер, катализатор полимеризации и наполнитель, о т л и чающаясятем, что, с целью повы- 35 шения жизнеспособности полимербетонной смеси и прочности полимербетона на сжатие и изгиб, она содержит в качестве катализатора полимеризации смесь концентрированной серной кислоты и фенола в соотношении 1-5:1 при следующем содержании компонентов, мас. %:

Фурфолацетоновый мономер

6-15

Катализатор полимеризации Наполнитель

0,24 - 3,75Остальное

Источники информации, принятые во внимание при экспертизе

- 1. Заиченко А.Р., Касьян В.Х. Новые коррозионностойкие конструкции из полимербетона для промышленного строительства. К., "Буді вельник", 1976, с. 12.
- 2. Мощанский Н.А. и др. Химичеоки стойкие мастики, замазки и бетоны на основе термореактивных смол. М., Стройиздат, 1968, с. 20.

Редактор Ю. Ковач	Составитель Р. Хаса Техред А.Бабинец	нов Корректор Е. Рошко		
Заказ 5517/36 Тираж 641 Подписное ВНИИПИ Государственного комитета СССР по делам изобретений и открытий				
	Іосква, Ж-35, Раушска			
Филиал ППГ	I "Патент", г. Ужгород	, ул. Проектная, 4		

40