https://doi.org/10.35579/2076-6033-2019-11-01

Sergey Bosakov, DSc in Engineering Science, Professor, Chief Researcher,
Institute BelNIIS RUE; Professor, Department of Mathematical
Methods in Construction, Belarusian National Technical University
(Minsk, Belarus)

Oksana Kozunova, PhD in Engineering Science, Associate Professor,
Department of Architecture and Construction; Head of Design
Department, Belarusian State University of Transport (Gomel,
Belarus)

DEVELOPMENT OF THE THEORY OF COMPUTATION

OF PIVOTALLY-CONNECTED BEAMS ON AN ELASTIC
FOUNDATION TAKING INTO ACCOUNT THEIR PHYSICAL
NONLINEARITY

© PYN «UhHcTuTyT BenAHUNUC», 2019
Institute BeINIIS RUE, 2019

ABSTRACT

This work presents a brief review of the literature on the theory and
technique of computation of pivotally-connected structures on a linear-
ly-elastic foundation. The authors refer to the works of B.G.Korenev,
G.Ya.Popov, .A.Simvulidi, R.V.Serebryany and A.G.Yuryev, in which in-
vestigations for calculating the pivotally-connected beams and slabs on
an elastic foundation are performed using different approaches.

From the analysis of the scientific and normative literature on the
subject under consideration, a conclusion can be made that there is no
common approach to solution of this problem, which would hold for any
pivotally connected structures being in contact with any elastic founda-
tion model under the action of an arbitrary external load.

Besides, when designing the load carrying members of pavements of
motor roads of various purposes in the Republic of Belarus, a number of
branch-specific normative documents, where the pavements with the load
carrying member and interconnection of members over the track length
are considered separately in unconnected setting, is used.
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In this work, a universal approach for computation of pivotally-con-
nected beams on an elastic foundation in the linear setting and taking into
account the physical nonlinearity of the beam material is proposed. This
approach is based on a mixed method of structural mechanics and im-
plemented in different foundations taking into account the Zhemochkin’s
relations for the functions of influences of an elastic medium.

The following hypotheses and assumptions of the linear theory of elas-
ticity and structural mechanics are taken into consideration: only normal
stresses act at the contact of the beam with the foundation; for beams the
hypotheses of the flexural theory; the pivot joints are cylindrical and the
distribution of the contact stresses over the beam width is uniform.

The physical nonlinearity of the beam material is taken into consid-
eration through the variable rigidity of the Zhemochkin’s areas. Namely:
after determining the forces in the Zhemochkin’s bonds at the contact of
every beam with an elastic foundation as a result of the linear compu-
tation, the values of bending moments in each section of every beam are
determined by the structural mechanics methods. From the calculated
values of the moments, the tangential rigidity for each Zhemochkin’s area
on the beam is determined using the formula of the “moment-curvature”
dependence for the beam sections are determines as hyperbolic tangent.

In the results of nonlinear computation, the stress-strain behaviour of
the system of pivotally-connected beams on an elastic foundation is inves-
tigated as it was made earlier in the linear setting: distribution of contact
stresses under the beams, internal forces in the beams and pivot joints as
well as elastic foundation settlements.

The proposed approach is implemented numerically with the use of
the Mathematica 10.4 mathematical package. The computation exam-
ple for three pivotally-connected beams on the Winkler foundation taking
into account their physical nonlinearity.

Keywords: pivotally-connected beams, mixed method,
Zhemochkin’s bonds, Winkler foundation, nonlinear computation,
“moment curvature” dependence, contact tension, elastic foundation
settlements.

For citation: Bosakov S., Kozunova O. Development of the theory
of computation of pivotally-connected beams on an elastic foundation
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BocakoB Ceprei BUKTOPOBUU, A-p TEXH. HayK, NPodeccop, rasHbIi Ha-
YUHbIN coTpyAHUK PYI «MHctuTyT BenAHUNC»; npodeccop, kadeapa
«MaTtemartnyeckme MeToAbl B CTPOUTEABCTBE», BEAOPYCCKMM HauMo-
HaAbHbIM TEXHUYECKUIM yHUBEPCUTET (I. MUHCK, Beaapycb)

Ko3yHoBa OkcaHa BacUAbeBHaA, kaHA. TEXH. HayK, AOLEHT Kadeapbl «ApXu-
TEKTYpa W CTPOUTEABCTBO», HaYaAbHWK MPOEKTHO-KOHCTPYKTOPCKOrO
otaena, YO «benopycckuii rocyaapCTBEHHbIM YHUBEPCUTET TpaHCNop-
Ta» (r. fomenb, beaapychb)

PA3BUTUE TEOPUU PACUYETA LULAPHUPHO-
COEAUMHEHHbIX BANOK HA YNIPYFTOM OCHOBAHUU
C YYETOM UX ®U3UUYECKOU HEAMHEUHOCTU

AHHOTALMUA

B pabome npusodumcsi kpamxkuil 0630p aumepamyps. no meo-
puu u memooukam pacuema WAPHUPHO-COeOUHEHHbIX KOHCMpPYKUULl
Ha JIUHelHO-YyNpY2OM OCHOB8AHUU. ABMOPbL CCbLIAIOMCS HA pabomel
B. I Kopenesa, I. . ITonosa, U. A. Cumgynudu, P. B. CepebpsiHozo,
A. I FOpvesa, 8 KOMOPbLX PAZAUUHBIMU NOOX00AMU NPOBedeHbL UCCle-
008aHUs NO pacuemy WaAPHUPHO-COeOUHEHHbLX OANOK U UM HA ynpy-
20M OCHOBAHUUL.

N3 ananuza HaQyuHotl U HOpMAMUBHOIL IUMePAMypbL N0 PACCMAMpuU-
8aemotl memamuxe MOXCHO c0eaAmMb 861800 06 omcymcmauu obujezo noo-
Xx00a K peueHUt0 amMoil npobyembl, cnpasedu8ozo s atobbLX WAPHUD-
HO-COEOUHEHHbIX KOHCMPYKUULL, KOHMAKMUPYOWUX ¢ Jt0001 MO0enbio
ynpyz0eo 0CHO8AHUS N00 delicmauemM NPOU3BONIbHOLU 8HelUHell Hazpy3KU.

Kpome mozo, npu npoekmuposaHu Hecyujux 3jieMeHmos8 0opoxc-
HbIX NOKpbMUl a8MOMOOUNBHBIX 00P02 PA3NAUUHO20 HA3HAUEHUS 8
Pecnybauxe Benapycb ucnons3yemcst psi0 0mpaciesblX HOpMAmueHbLX
00KYMeHMO8, 8 KOMOPbLX 00PONCHASL 00ex#c0a ¢ HeCYLUM JIeMeHMOM U
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coeOuHeHUe 3sieMeHmMo8 mexcdy cob0ll no diuHe MPAaccbl paccmMampusd-
romcst omoeibHO, 8 HeCB8A3HOI NOCMAHOBKe.

B danHotl pabome npediazaemcs yHU8epCAbHbLIL N00X00 011 pac-
Yema wWapHUPHO-CoeOUHEHHbLX 6ANTOK HA YNPY20M OCHOBAHUU 8 AUHell-
HOU NocmaHogke U ¢ yuemom usuueckoll HeJuHeliHOCMuU Mamepuana
6anok. 9mom nodxo0 0CHOBAH HA CMEULAHHOM Memode CMpouUmenbHoLl
MEXAHUKU U Peanusyemcs 8 pa3HblX OCHOBAHUSX C YUemoM COOMmHoule-
Hutl JKemoukuHa ons pyHkyuil enusiHuil ynpyzotl cpeowl.

B pacuem npuxumaromes caedyroujue 2unomessl U 0ONyujeHUs Ju-
HellHOll meopuu ynpy2o0cmu U CmpoumenbHoll MeXaHUKU: HA KOHMakme
banku ¢ 0cHogaHuem Oelticmayom moabko HOPMAIbHble HANPANCEHUS,
01 6anok cnpasediussbl 2uNOMe3bl Meopuu u32uba, WapHUpsbL Mexcoy
bankamu 610Mces YUAUHOpUUecKUMU, pacnpedesieHue KOHMAaKMmMHbLX
HanpsceHUll no WupuHe 6AI0K — PABHOMEPHOE.

dusuueckas HenuHellHocmb Mmamepuana b6anok 6 npeonazae-
MOM pacueme yuumsl8aemcs uepe3 nepemeHHyo JHecmkocms yuacm-
ko8 JKemoukuHa. A UMeHHO: nocsae onpedesieHUs YCUNUIl 8 CBA35X
JKemoukuHna Ha KoHmMakme kaxcooll 6anku ¢ ynpyeum ocCHo8aHUeM 8 pe-
3ynbmame JuHeliH020 pacuema, Memooamu CmpoumeabHol MexXaHuKu
ONpeoessIoMCs 8eNUUUHBL U32UOAIOWUX MOMEHMOB 8 KANCOOM CeueHUU
kaxcootl banku. ITo 8bIUUCTIEHHBIM 3HAUEHUSM MOMEHMO8 onpedesisiem-
€Sl KAcamesibHAasl JHecmKocms 0l kKaxc0ozo yuacmka KemoukuHa Ha
bankax no opmysne 3a8UCUMOCIIU «MOMEHM-KPUBUSHA» ONLSl ceueHull
banku 8 sude 2unepbonuUeck020 maHzeHcd.

B pe3ynsmamax HeJluHeliH020 pacuema, Kak u paHee 8 TUHelHOU no-
CmaHoske, Uccaedyemcsi HanpsiiceHHOo-0eopMUPOBAHHOE COCMOSIHUE
cucmembl U3 WAPHUPHO-COEOUHEHHBIX BANOK HA YNPY2OM OCHOBAHUU:
pacnpedeieHue KOHMAKMHbLX HANPsceHULl n00 bankamu, BHympeHHUe
ycunus 8 6ankax u WapHUPHbIX cOeOUHEHUSX, d MAakKice 0ca0KU ynpyao-
20 OCHOBAHUSI.

JucneHHas peanudayus npedadzaemozo nooxo0d 8bINOJHEHA C
ucnoib308aHuUemM mamemamuueckozo nakema Mathematica 10.4.
IIpusedeHn npumep pacuema 01 mpex WAPHUPHO-COeOUHEHHbLX Oa-
JIOK HA 0CHOBAHUU BuHkepa ¢ yuemom ux gpusuueckoil HequHelHO-
cmu.
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Wu-t benHUNC; peakosn.: O. H. Jlemkesuu [u ap.]. — Munck, 2019. -
Bemn. 11.-C. 11-24. https://doi.org/10.35579/2076-6033-2019-11-01

INTRODUCTION

Vitality of the problem. Literature Review. The investigations
for computation of pivotally-connected linearly elastic beams and
slabs on an elastic foundation were performed in the USSR by
B.G.Korenev [1], who proposed the use of angular deformation
to describe a jump in angular motion to the left and right from
the intermediate pivot joint between neighbouring beams. G.Ya.
Popov [2] used a complex mathematical apparatus to obtain the
accurate solution for the contact problem of bending of pivotally-
connected beams on an elastic semi-plane. N.I.Simvulidi [3]
proposed the method of computation of composite beams on an
elastic foundation; however it does not take into account the mutual
influence of the beams. R.V.Serebryany [4] gave a solution to a
spatial problem of bending of pivotally-connected rectangular slabs
on the elastic half-space and compiled the tables to facilitate the
engineering computations. A.G.Yuryev [5] used a L.P.Vinokurov’s
integral method to solve this problem.

From the analysis of the scientific literature on the computation of
pivotally-connected structures on an elastic foundation, a conclusion
can be made that there is no common approach to solving this
problem, which would fold for pivotally-connected beams and slabs
that are secured on any elastic foundation model under the action of
an arbitrary external load.
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Further, the authors propose the universal approach to
computation of pivotally-connected beams taking into account their
physical nonlinearity on an elastic foundation based on a mixed
method of structural mechanics [6] and B.N.Zhemochkin [7]. This
approach holds for beams of various lengths and rigidities, on any
model of an elastic foundation and action of arbitrary external
vertical load.

Setting the problem and algorithm of the linear computation
Let us consider a system of pivotally-connected beams on an elastic
foundation under the action of external load (Figure 1). It is required:
to determine the distribution of contact stresses under the beams,
forces and settlements. We will assume [8] that only normal stresses act
at the contact between the beam and the foundation, the hypotheses of
the theory of bending hold for the beams and the pivot joints between
the beams are cylindrical. The distribution of the contact stresses over
the width is uniform.

T =

Figure 1. System consisting of pivotally-connected beams on an elastic foundation

We will divide each beam into areas with equal length and put a
vertical link, through which the contact of the beam with the elastic
foundation is provided, at the centre of each area (Figure 2). The
obtained multiply statically indeterminate system will be solved by
the mixed method of structural mechanics [6] while assuming the
unknown forces X, in the Zhemochkin’s bonds at the contact between
the beams and the foundation to be linear and angular motions u; , @,
of the pinching introduced at the edges of the beams and transverse
forces Q, in the split intermediate pivot joints.
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Figure 2. Zhemochkin’s bonds at the contact between the beams and the foundation

The basic system of the mixed method is illustrated in Figure 3.
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Figure 3. Basic system of the mixed method

System of canonical equations of the mixed method for computation

of one beam with the number i appears as follows:
O X+ 48, X, +u, —¢, x; - SI’QQ[ +A, = 0
0, X +..+8, X, +u; —@;x,, — Sm,QQl. +A, , = 0
“ XX +0, +R=0

k=1 (1)
2 XX = L0 -M =0
k=1

I{Z_%Sk,QX,{ =800, —u; +L 9+ Ay, +uy =0,

where m — is the number of Zhemochkin’s areas on a single beam;
u;,¢, — are unknown linear and angular motions of the
introduced pinching on the beam with the number i ;
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R, M — is the resultant of the external forces and moment of
the resultant relatively to the introduced pinching on the beam with
the number i;

Q, - is the transverse force in the split pivot joint on the right
side of the beam with the number ; ;

X, — is the force in the Zhemochkin bond with the number £ .

The coefficients at the unknown variables of the system of canonical
equations of the mixed method (1) appear as follows:
1) for the Winkler foundation

—L_Fﬁ l_k
T ke 3E P ’
€3
5lk=3E ik lik,

where K is the bedding value of the elastic foundation;
E — is the flexural rigidity of the beam;

2) for the elastic half-space
with the elastic coefficient of £, and Poison’s ratio of v,

1-v3 &
0, = R + Wi,
i,k ”E()ﬁ i,k 3E i,k
where the dimensionless function £}, is defined by the following
relations [7]

2 2
Fo=2%n 2 lon| S S i1 e 1 [ Swn |;
’ b c c b b b

1
Fy=r——T

x, — x| @
where b and ¢ are the dimensions of the Zhem
ochkin’s area on the beam (b is the beam width).
The dimensionless beam sags with pinching at the beam edge in
the basic system of the mixed methods are to be determined from the
formula [7]
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The free terms of the system (1) depend on the external load and are
to be determined with the use of the formulae (3). We will note that the
last equation in (1) expresses the condition of absence of relative vertical
motion in the intermediate pivot joint between neighbouring beams.

If the number of beams is designated as N, the total number of
unknown forces in the Zhemochkin bonds, linear and angular motions
of the introduced pinching on the beams and transverse forces in the
intermediate pivot joints for computing this system of composite beams
will be expressed by the formula:

(3)

N(m+2)+N-1 4)

The structure of the system of resolving equations for the system
of beams is presented in Figure 4. The blocks on the main diagonal
are formed according to system (1), the supplementary blocks are
zero ones in case of the Winkler foundation; in case of elastic half-
space, they characterise the mutual influence of the beams and are
determined with the use of formulae (2).

Q

Q.

Q

Q:

Dy Dy,

Qs

Figure 4. Structure of the system of resolving equations
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Taking into account the physical nonlinearity in the beam.
Algorithm of nonlinear computation After determining the forces
in the B.N.Zhemochkin’s bonds at the contact of each beam with the
elastic foundation by linear computation, the bending moment values
in each section of each beam are determined by known structural
mechanics methods [6]. From the calculated values of the moments,
the tangential rigidity for each Zhemochkin’s area on the beam is
determined using the formula of the adopted “moment-curvature”
dependence for the beam sections. In the work, it is adopted as
hyperbolic tangent [9]. Therefore

B _ By

: ) (5)
Cosh® (MBIO Xi(O)j
im

where B, — is the initial flexural rigidity of the Zhemochkin’s area
with the number / according to elastic analysis (zero iteration);

M lim — is the ultimate moment perceived by the beam
section. In this work, it is determined using the Beta program [10];

X; ~— is the curvature at the Zhemochkin’s area with the
number i to be determined after the elastic analysis from the formula
of finite differences [8].

0 0 0
O _Yin” =25+ 5,4, ©)
Xi - CZ ’
where y,-(o) — is the vertical motion at the centre of the Zhemochkin’s
areawith the number ; according to the elastic analysis. Itis determined
according to the known forces in the Zhemochkin’s bonds
¥ (©

=L _for an elastic Winkler’s foundation; (7

©
1

m N .

> Y F, X, - for the elastic half-space.

2
yanzl—vo
l TE AX p=1k=1

In the further computation, it is necessary to dletermine the
coefficients of canonical equations Si,k() and A; p() as for the
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variable-rigidity beam. To do this, we use the Mohr’s integral
presentation [7] as a sum

" M, Y (8)
1

Si,k() Z (l)/c Ax

n=l1 B

The free terms A, p ) of the system (1) are determined similarly.
Multiplication of epures for a variable-rigidity beam is shown in Figure 5.

e
1%})—1

7 N B
i—0 T

Figure 5. Multiplication of epures for a variable-rigidity beam

Based on the calculated 0; ,t ) and A Values the system (1)
is solved again and the new X ) values in the Zhemochkm s bonds.
To determine the corrected r1g1d1ty values B ), the calculations
(5)-(8) are repeated at each Zhemochkin’s area. Further, the 5,',;((2
and A; ,  are determined again, the system (1) is solved, the X i(z)
are determined, etc. The iteration process is completed, when the
difference

Ml_(’”) _Mi(”—l) <, )]

where ¢ — is the specified error value.

Numerical results Let us consider a system consisting of three
pivotally-connected beams with equal length of ¢=5; and section of
1.2 m X 0,4 m made of heavy concrete of the class C20/25 on an elastic
Winkler foundation with the bedding value of x =2000 kN/m3.
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The middle beam is loaded with uniformly distributed load of
¢=120 kN/m. When performing the computation, each beam was
divided into 21 Zhemochkin’s area.

Table 1 presents the numerical values for the contact stress,
settlement, moment and rigidity at the centre of the middle beam for
the first two iterations. The transverse forces in the two intermediate
pivot joints are equal to 97.04 kN after the last iteration.

Table 1
Results of the nonlinear computation

0 1 2

Iteration number . . .. . . .
(elastic analysis) | (firstiteration) | (second iteration)

Contact stresses, kPa 82.57 82.41 82.41
Settlement, mm 9.806 9.810 9.810

Maximum bending moment in

the middle beam, kN*m 118.959 118.897 118.894

Rigidity at the centre of the

middle beam, kKNem2 185,920 182,070 181,171

The analysis of numerical results of Table 1 confirms the known
fact that the beam sags increase and the forces in the beams decrease
when performing the computation of reinforce-concrete bending
beams taking into account the physical nonlinearity. It should be noted
that there are no bending moments in a single beam on a Winkler
foundation under the action of uniformly distributed load. No such
phenomenon is observed in the given example.

CONCLUSION

In this work, a simple technique for computation of pivotally-
connected reinforced-concrete foundation beams on an elastic
foundation taking into account the physical nonlinearity of the beams
is proposed. The technique is based on the mixed method of structural
mechanics with the use of the Zhemochkin’s method, the influence
functions of which allow taking into account different models of an
elastic foundation when simulating the latter. The physical nonlinearity
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of the material is taken into account by approximation of the “moment-
curvature” dependence in a reinforced-concrete beam by the hyperbolic
tangent function and further use of the variable (tangential) rigidity
in the iteration algorithm of nonlinear computation and following
analysis of its convergence.

A numerical example of the nonlinear computation is presented
with the use of the Mathematica 10.4 computer package for a system
of three pivotally-connected beams on an elastic Winkler foundation.
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