(19) SU (11) 1065493 A

3(51) C 22 C 37/10

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 3497603/22-02 (22) 18.10.82 (46) 07.01.84. Бюл. № 1 (72) С.Н.Леках, Е.И.Шитов, А.Г.Слуцкий, Ю.П.Белый,В.А.Мальев, В.П.Василенко, В.А.Родионов, В.П. Дворянчиков, И.В. Стороженко, В.Г.Рабеко, В.Б.Пичугин, А.И.Фалитнов и А.К.Кисляков (71) Белорусский ордена Трудового Красного Знамени политехнический институт (53) 669.15-196(088.8) (56) 1. Авторское свидетельство СССР № 309972, кл. С 22 С 37/00, 1971. 2. Авторское свидетельство СССР № 836137. кл. С 22 С 37/10, 1981. (54)(57) ЧУГУН, содержащий углерод, кремний, марганец, хром, никель,

ванадий, азот, церий, алюминий и железо, о т л и ч а ю щ и й с я тем, что, с целью повышения износостойкости и коррозионной стойкости, он дополнительно содержит фосфор и титан при следующем соотношении компонентов, мас.%:

Углерод	3,0-3,6
Кремний	1,7-2,7
Марганец	0,3-0,8
Хром	0,1-0,5
Никель	0,05-0,5
Ванадий	0,15-0,5
Азот	0,005-0,02
Церий	0,005-0,02
Алюминий	0.001-0,1
Фосфор	0,16-0,5
Титан	0,03-0,15
Железо	Остальное

Изобретение относится к металлуртии, в частности к разработке составов чугуна для отливок, работающих в условиях трения скольжения и агресивных средах.

Известен чугун, содержащий, мас. 8: Углерод 3,0-3,3; Кремний 0,8-1,2; Марганец 0,4-0,8; Никель 0,05-0,15; Титан 0,05-0,15; Ванадий 0,1-0,25; железо - остальное [1].

Недостатками чугуна этого состава 10 являются низкая износостойкость и коррозионная стоикость.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является чугун, содержащий компоненты при следующем соотношении, мас. 8: Углерод 2,9-3,5; Кремний 1,7-2,7; Марганец 0,3-0,8; Хром 0,1-0,5; Никель 0,05-0,8; Ванадий 0,15-0,5; Азот 0,005-0,02; Церий 0,005-0,02; Алюминий 0,001-0,1; Железо - остальное. В качестве примеси могут быть сера до 0,08% и фосфор до 0,15% [2].

Однако недостаточно высокие стойкость в агрессивных средах и износостойкость не возволяют рекомендовать применение известного чугуна для изготовления гильэ цилиндров внутреннего сгорания.

Цель изобретения - повышение износостойкости и коррозионной стойкости чугуна.

Указанная цель достигается тем, что чугун, содержащий углегод, кремний, марганец, хром, никель, ванадий, азот, церий, алюминий и железо, дополнительно содержит фосфор и титан при следующем соотношении компонентов, мас. %:

Углерод	3,0-3,6
Кремний	1,7-2,7
Марганец	0,3-0,8
Хром	0,1-0,5
Никель	0,05-0,5
Ванадий	0,15-0,5
TOEA	0,005-0,02
Церий	0,005-0,02
Иннимопс	0,001-0,10
4 осфор	0,16-0,5
Титан	0,03-0,15
Железо	Остальное

Пределы содержания компонентов установлены исходя из получения наиболее благоприятного сочетания механических свойств износостойкости, коррозионной стойкости. Повышение концентрации фосфора выше 0,5%, приводит к снижению механических свойств чугуна. Нижний предел (0,16%) содержания фосфора связан с появлением фосфидной эвтектики в структуре. Нижний предел по содержанию кремния и углерода вызван необходимостью получения металлической матрицы без метастабильной фазы, верхний - ограничен получением 65

перлитовой основы с количеством феррита не более 5-8%, Содержание xрома (0,1-0,5%), никеля (0,05-0,5%)ванадия (0,15-0,5%), титана (0,03-0,15%), азота(0,005-0,02%) выбирается из условия максимального упрочнения металлической основы. Увеличение концентрации перечисленных элементов выше выбранных пределов повышает склонность чугуна к отбелу. Пределы содержания алюминия (0,001-0,1%) и церия (0,005-0,02%) обеспечивают получение отливок без отбела. Оптимальный состав сплава содержит, мас.%: углерод 3,3; кремний 2,1; марганец 0,6; хром 0,3; никель 0,25; ванадий 0,3; азот 0,01; фосфор 0,35; титан 0,1; церий 0,01; алюминий 0,005.

Наличие фосфора в составе чугуна приводит к образованию в структуре твердых включений фосфидной эвтектики, которая располагается преимущественно по границам эвтектических зерен. Структура чугуна состоит из

25 легированного перлита высокой и дисперсности мелких включений графита. Присутствие фосфора измельчает дендриты первичного аустенита и размер эвтектического зерна. Данные структурные изменения значитель.

но увеличивают твердость материала. Совместное легирование сплава карбидообразующими элементами: (хромом, марганцем, ванадием) заметно повышает микротвердость фосфид-

35 ной эвтектики. Наличие фосфора и титана в сплаве способствует сохранению твердости материала после выдержки при повышенных температурах В присутствии азота титан упрочняет 40 металлическую матрицу за счет обра-

зования дисперсных карбонитридов титана.

60

Увеличение износостойкости предлагаемого чугуна с повышенным содер-45 жанием фосфора связано с наличием в структуре фосфидной эвтектики, обладающей высоким сопротивлением к истиранию. Фосфидная эвтектика играет роль основы, воспринимающей давление в паре трения, и способствует образованию "карманов", в которых задерживается смазка. Значительное измельчение эвтектических зерен в связи с добавкой фосфора и титана приводит к более равномерному распределению включений фосфицной эвтектики в структуре. Сплав практически не склонен к адгезионному взаимодействию.

Коррозионная стойкость сплава повышается за счет увеличения дисперсности перлита, равномерного распределения графита, а также снижения электродного потенциала чугуна вслед ствие наличия в структуре карбонитри дов титана и фосфидной эвтектики,

повышающих количества катодной базы в структуре, и значительного легирования титаном феррита эвтектоида. Большое влияние на повышение коррозионной стойкости оказывают межзерновые прослойки по границам первичных и эвтектоидных зерен, образующиеся в период кристаллизации и охлаждения чугуна, содержащие значительное количество фосфора, обладающие повышенной коррозионной стой костью и служащие "барьерами" на пути распространения коррозии.

Для получения чугуна выплавлены три состава сплавов, содержащих каждый ингредиенты на нижнем, среднем и верхнем уровнях. Содержание железа при этом составляло дополнительно до 100% в каждом сплаве. Для сравнительных испытаний использован известный чугун со средним содержанием легирующих элементов.

Химические составы чугунов представлены в табл. 1.

Чугуны готовились в тигельной индукционной печи емкостью 40 кг с кислой футеровкой. В качестве шихты использовались литейный чугун марки ЛК-3, стальной лом, ферросплавы кремния, никеля, ванадия, хрома, церия, фосфора, титана, азотированный ферромарганец (5% азота) и алюминий. Ферроцерий и алюминий вводились в ковш перед заливкой. На выплавленных образцах измерялась твердость при различных температурах. Испытания на износостойкость

проводились в режиме сухого трения скольжения в паре с улучшенной сталью 45 твердостью 48 нг при нагрузке 8 кг/см² и скорости скольжения 2,0 м/с. Износостойкость образцов оценивалась весовым методом.

Полученные результаты представлены в табл. 2.

Как видно из табл. 2, изменение 10 концентрации фосфора и дополнительный ввод титана существенно повышает твердость сплава при повышенных температурах, износостойкость и коррозионную стойкость материала.

15 Чугун предлагаемого состава обеспечивает повышение износостойкости и коррозионной стойкости сплава. При этом материал обладает оптимальной твердостью, позволяющей проводить механическую обработку отливок, не

механическую обработку отливок, не меняя технологического процесса. Структура предлагаемого чугуна пер-литная. Графит имеет мелкопластинчатую форму. Высокая дисперсность перлита, наличие включений фосфидной

эвтектики, отсутствие в структуре ледебурита, обеспечивают высокую эксплуатационную работу парл трения в условиях агрессивной среды.

30 наиболее эффективно использовать для изготовления отливок гильз цилиндров двигателей внутреннего сгорания. Годовой экономический эффект от внедрения изобретения составит. 35 960 тыс.руб.

Таблица 1

	Пределы содержа- ния основ- ных эле- ментов	Содержание элементов, мас.%							
Сплав		С	Si	Мn	Cr	N i	v	N	p
Известный	Средний	3,2	2,0	0,6	0,3	0,15	0,36	0,015	0,12
Предлага- емый	Нижний	3,0	1,7	0,3	0,1	0,05	0,15	0,005	0,16
	Средний	3,3	2,2	0,5	0,3	0,25	0,3	0,01	0,35
	Верхний	3,6	2,7	0,8	0,5	0,5	0,5	0,02	0,5

•	1002493		•

	•		•	. 1	Продолж	ение табл. 1.	
	Пределы содержа- ния основ- ных эле- ментов	Содержание элементов, мас.%					
Сплав		Ct At	Ti				
Известный	Средний	0,01 0,0					
Предлага- емый	Нижний	0,005 0,00	0,03			,	
	Средний	0,01 0,00	0,09				
	Верхний	0,02 0,1	0,15				
			-		Та	блица 2	
Сплав	Пределы содержания основных элементов	Иэнос, г	Корро- зия, мг	6, , кг/мм	нв	НВ после вы- сокотемпера- турной вы- держки	
Известный	Средний	0,34	800	54	229	197	
Предлагаемый	Нижний	0,23	630	51	241	231	
	Средний	0,19	570	58	263	255	
	Верхний	0,16	510	53	270	261	

Составитель Н. Косторной Корректор А. Тяско Ридактор О. Черничко Техред Т.Фанта Заказ 11011/31 Тираж 608 Подписное ВНИИПИ Государственного комитета СССР по делам изобретений и открытий . 113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4