(19) SU(11) 1070208.

3(51) C 23 C 9/02.

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1	21	١.	ા	4 8	ŧ٩	ા ર	1	1	12	2-	n	2

(22) 10.09.82

(46) 30.01.84. Бюл. № 4

(72) Б.С. Кухарев, С.Н. Левитан,

Н.Г. Кухарева и Е.О. Скачкова

(71) Белорусский ордена Трудового Красного Знамени политехнический институт

(53) 621.785.5.06(088.8) (56) 1. Авторское свидетельство СССР № 406969, кл. С 23 С 9/02, 1973.

2. Авторское свидетельство СССР

по заявке № 3469567/22-02, кл. С 23 С 9/02, 1982.

(54)(57) порошкообразный состав для ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ НИКЕЛИРОВАННЫХ УГЛЕРОДИСТЫХ СТА-

ЛЕЙ, содержащий окись алюминия, алюминий, окись хрома, лигатуру ЖКМК-3, олово, хромоникелевый порошок $\Pi X 20 H 80$, хлористый аммоний, о т л и чающийся тем, что, с целью повышения насыщающей способности состава, он дополнительно содержит окись кобальта при следующем соотношении компонентов, мас. %:

mac. o.	
Алюминий	7-11
Окись хрома	26-30
Лигатура ЖКМК-3	4-6
Олово	12-14
Хромоникелевый поро-	
шок ПХ 20 Н 80	. 6-8
Хлористый аммоний	1-3
Окись кобальта	4-8
Окись алюминия	Остально

10

30

MOGX

Изобретение относится к металлургии, в частности к составам для получения защитных покрытий методами химико-термической обработки и может быть использовано в приборостроительной, машиностроительной, пищевой и других отраслях промышленности.

Известен состав [1] для хромирования на основе порошков окиси алюминия и фторис-

того алюминия, содержащий, мас.%:
Окись хрома 56-60
Алюминий 10-15
Фтористый алюминий 3-5
Окись алюминия Остальное

Недостатком известного состава 15 является его низкая насыщающая способность. Так, после обработки никелированных углеродистых сталей в составе при 700°С в течение 4 ч формируется диффузионный слой не более 7 мкм.

Наиболее близким к предлагаемому по технической сущности и достигае-мому результату является порошкооб-разный состав [2] для химико - терми-25 ческой обработки, содержащий, мас. %:

Окись алюминия	28-32	
Алюминий	7-11	
Окись хрома	26-30	
Окись кобальта	4-8	
·Лигатура ЖКМК-3	4-6	
Хромоникелевый поро-	•	
шок ПХ20Н80	6-8	
Хлористый аммоний	1-3 .	

Недостатком такого состава является низкая насыщающая способность, которая при нагреве до 700°С в течение 4 ч достигает 28 мкм.

Цель изобретения - повышение насыщающей способности состава.

Указанная цель достигается тем, 40 что порошкообразный состав для хими-ко-термической обработки изделий из никелированных углеродистых сталей, содержащий окись алюминия, алюминий, окись хрома,лигатуру ЖКМК-3,олово, 45 хромоникелевый порошок ПХ20Н80,хлористый аммоний,дополнительно содер-

жит окись кобальта при следующем соотношении компонентов, мас. %:

АЛЮМИНИИ	1-11
Окись хрома	26-30
Лигатура ЖКМК-3	4-6
Олово	12-14
Хромоникелевый	
порошок НХ20Н80	6-8
Хлористый аммоний	1-3
Окись кобальта	4-8
Окись алюминия	Остальное

Лигатура ЖКМК-3 представляет собой порошкообразную смесь следующего состава, %:

Магний 6-12
Кальций 8-20
Кремний 40-55
Железо Остальное
Хромоникелевый порошок ПХ20Н80
по ГОСТ 13084-67 имеет состав, мас.%:

19-23

Никель Остальное Введение окиси кобальта приводит к увеличению диффузионного слоя. Олово обеспечивает получение равномерного по толщине диффузионного слоя с одинаковым фазовым составом, а введение хромоникелевого порошка ПХ20H80 способствует улучшению качества поверхности обрабатываемых материалов.

Химико-термическую обработку осуществляют в контейнерах с порошковой смесью предлагаемого состава с плавким затвором. Температура процесса химико-термической обработки 700°С, время насыщения 4 ч.

Сравнительные данные по обработке никелированных углеродистых сталей при использовании известного и предлагаемого составов приведены в таблице.

Таким образом, применение предлагаемого состава позволяет увеличить толщину диффузионного слоя в 1,2-1,5 раза по сравнению с обработкой известным составом.

Состав	Содержание компонентов в составе, мас.%	Режил t,°C	4 XTO С, ч	Тол- щина слоя, мкм
Известный	Al ₂ O ₃ 29 + Al ₂ 10 + Cr ₂ O ₃ 28 + WO ₃ 5 + + ЖКМК 9 + Sn 9 + ПХ2ОН8О 8 + + NH ₄ Cl 2	700	4	28
Предлага- емый:				
1	Al ₂ O ₃ 32 + Al 7 + Cr ₂ O ₃ 28 + CoO ₃ 8 + \times KKMK 4 + Sn 14 + \times TX20H80 8 + \times NH ₄ Cl 1	700	4	42

		Продол	кение	таблицы
Состав	Содержание компонентов в составе, мас.%	Режим t,°C	XTO	Тол- щина слоя, мкм
2	Al ₂ O ₅ 30 + Al 9 + Cr ₆ Q ₅ 28 + CoO ₅ 6 + жкмк 5 + Sn 13 + fix20H80 7 + + NH ₄ Cl 2	+ 700	4	41
3	Al ₂ O ₃ 28 + Al 11 + Cr ₂ O ₃ 30 + CoO ₃ 4 + **KMK 6 + Sn 12 + H X20H80 6 + NH ₄ Cl 3	700	4	40

Составитель И. Столярова
Редактор Н. Безродная Техред С.Легеза Корректор С. Шекмар
Заказ 11651/29 Тираж 900 Подписное
ВНИИПИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г.Ужгород, ул. Проектная, 4