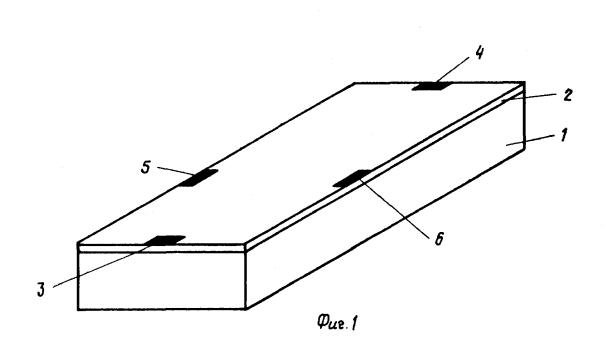


(19) SU (11) 1406546 A 1

(51) 4 G 01 R 33/06


ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 4163126/21-21
- (22) 19.12.86
- (46) 30.06.88. Бюл. № 24
- (71) Белорусский политехнический институт
- (72) О.К. Гусев, В.П. Киреенко,
- А.Г. Корженевский и В.Б. Яржембицкий
- (53) 621.317 (088.8)
- (56) Викулин С.И., Сафеев В.И. Физика полупроводниковых приборов. М.: Сов. радио, 1980, с.258-260.
- (54) ДАТЧИК ИНДУКЦИИ МАГНИТНОГО ПОЛЯ
- (57) Изобретение относится к электронике. Датчик индукции (ДИ) магнитно-

го поля (МП) представляет собой полупроводниковый кристалл 1 р-типа проводимости, например InAs, на поверхности которого посредством полировки
алмазной пастой создан инверсионный
слой 2 п-типа проводимости. На инверсионный слой 2 методом напыления
алюминия нанесены контакты 3-6. Рабочая температура ДИ составляет 77 К.
ДИ имеет повышенную помехоустойчивость и высокую точность измерения
индукции МП за счет обеспечения постоянства величины электродвижущей
силы Холла. 2 ил.

us SU as 1406546

<u>></u>

20

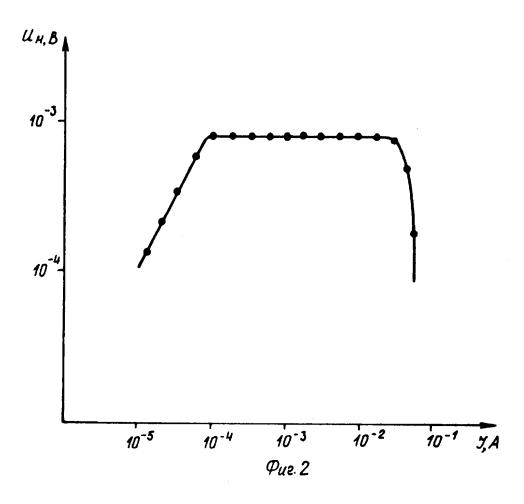
Изобретение относится к контрольно-измерительным приборам и может быть использовано для измерения индукции магнитного поля.

Целью изобретения является повышение помехоустойчивости датчика и точности измерения индукции магнитного поля за счет обеспечения постоянства величины ЭДС Холла, генерируемой датчиком, при изменении тока через него.

На фиг. 1 схематически изображен датчик индукции магнитного поля; на фиг. 2 - кривая зависимости ЭДС Хол- 15 ла, вырабатываемой датчиком, от величины электрического тока при индукции магнитного поля 0,24 Тл.

В качестве примера использован датчик индукции магнитного поля, представляющий собой кристалл 1р- InAs, на поверхности которого посредством механической полировки алимазной пастой создан инверсионный слой 2 потредством напыления алюминия созданы контакты 3-6. Рабочая температура датчика составляет 77 К.

При пропусканни через контакты 3 и 4 электрического тока контакт 3 имеет положительный потенциал такой величины, когда падение напряжения на переходе между кристаллом 1 и слоем 2 не превосходит порогового напряжения электрического пробоя пере- 35 хода, электрический ток протекает по поверхностному слою 2 и измеряемая на контактах 5, 6 ЭДС Холла, соответствующая по знаку п-типу проводимости, пропорциональна току и индукции магнитного поля. Увеличение электрического тока приводит к возрастанию падения напряжения на переходе между кристаллом 1 и слоем 2. При достижении порогового напряжения на переходе в области контакта 3 происходит электрический пробой перехода и ток протекает через слой кристалла 1 датчика. Однако высокое сопротивление перехода в области 50 контактов 5 и 6 приводит к тому, что основной вклад в измеряемую ЭДС Холла дает составляющая слоя 2. В процессе дальнейшего возрастания тока через датчик происходит распро-55 странение фронта области электрического пробоя от контакта 3 в направлении контакта 4. При этом составляющая тока через слой 2 сохраняется постоянной, что приводит к постоянству измеряемой ЭДС Холла при изменении тока. Постоянство ЭДС Холла сохранится до значения, при котором фронт области электрического пробоя достигнет контактов 5 и 6, в результате чего вклад составляющей ЭДС Холла кристалла 1 увеличится и постоянство измеряемой ЭДС Холла нарушится.


Таким образом, в диапазоне величин тока через датчик от соответствующего началу пробоя поверхностного перехода до соответствующего достижения фронтом области пробоя контактов, на которых измеряется ЭДС Холла, величина ЭДС Холла вазависит от тока и пропорциональна индукции магнитного поля.

На фиг. 2 представлена зависимость ЭДС Холла генерируемой датчиком, от величины тока при индукции магнитного поля 0,24 Тл. Из графика следует, что, действительно, в диапазоне величин тока от 10^{-4} до 2.10^{-2} А ЭДС Холла соответствует п-типу проводимости и не зависит от величины тока.

При подключении к контактам 5, 6 источника постоянного напряжения через добавочное сопротивление 57 Ом в магнитном поле 0,24 Тл величина ЭДС Холла 9,5.10⁻⁴ В остается постоянной в процессе изменения напряжения от 1,5 до 0,063 В. Это позволяет использовать автономный элемент питания, сохраняя работоспособность датчика до глубокой разрядки элемента без корректировки тока.

Формула изобретения

Датчик индукции магнитного поля, содержащий полупроводниковый кристалл и две пары контактов, о т л ич и а ю щ и й с я тем, что, с целью повышения помехоустойчивости датчика и точности измерений за счет обеспечения постоянства гальваномагнитной ЭДС при изменении тока через него, на поверхности полупроводникового кристалла сформирован слой с противоположным типом проводимости, монтакты нанесены на этот слой.

Редактор М. Циткина	Составитель Г. Павлов Техред Л.Сердюкова	
Заказ 3189/42	Тираж 772	Подписное
ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д. 4/5		