

(19) SU (11) 1423250 A 1

(51) 4 B 22 C 1/02

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4105547/31-02

(22) 22.05.86

(46) 15.09.88. Бюл. № 34

(71) Белорусский политехнический институт

(72) М.И.Курилина, П.П.Ковалев,

Ж.С.Кульба, Л.Ф.Зайцева

и А.И.Мнухин

(53) 621,742,45 (088,8)

(56) Авторское свидетельство СССР

№ 900926, кл. В 22 С 1/02, 1980.

Авторское свидетельство СССР № 653021, кл. В 22 С 1/00, 1976.

Дорошенко С.П. и др. Получение отливок без пригара в песчаных формах. М.: Машиностроение, 1979, с. 49

Авторское свидетельство СССР

№ 959887, кл. В 22 С 1/02, 1980. Авторское свидетельство СССР

№ 1305168, кл. В 22 С 1/02, 1985.

(54) СОСТАВ ПРОТИВОПРИГАРНОЙ ЭМУЛЬ-СИИ ДЛЯ ЛИТЕЙНОГО ПРОИЗВОДСТВА. (57) Изобретение относится к литейному производству и может быть использовано при получении формовочных смесей, водно-противопригарных красок и покрытий для модельной оснастки. Цель изобретения — повышение равномерности распределения эмульсии в объеме песчано-глинистых смесей или жидкостекольных красок за счет

повышения устойчивости к коалесценции и расслоению. Цель достигается благодаря тому, что эмульсия содержит гидрофобный материал, выбранный из группы экстракта послефенольной очистки масел или мазута, или минерального масла, 10-55 мас. %; омыляемые соединения с числом омыления 95 - 250 Mr KOH/r 3 - 15 Mac. %: омылитель неорганического типа, выбранный из гидроокисей щелочных металлов или водорастворимых солей бикарбонатов щелочных металлов, 0,3 -1,5 мас. %; воду - остальное. При этом состав в качестве омыляемых соединений с указанным числом омыления содержит жировой или масляный гудрон или кубовые остатки синтетических жирных кислот, или соапсток, а соотношение между гидрофобным противопригарным материалом, эмульгатором и омылителем(в мас. %) соответственно (4-18):1:(0,1-0,5). Изобретение поэволяет благодаря высокой устойчивости при длительном хранении противопригарной эмульсии к процессу коалесценции или расслоению лучше рассредоточивать эмульсию в процессе смесеприготовления и вводить ее при этом в меньшем количестве, а также получать отливки из чугуна практически без пригара. 2 э.п. ф-лы, 6 табл.

Изобретение относится к литейному производству и может быть использоват но при получении формовочных смесей, водно-противопригарных красок и по-крытий для модельной оснастки.

Цель изобретения — повышение равномерности распределения эмульсии в объеме песчано-глинистых смесей или жидкостекольных красок за счет повышения устойчивости к коалесценции и расслоению.

В качестве гидрофобного материала, выбранного из группы экстракта послефенольной очистки масел, могут быть 15 использовано: экстракт селективной очистки масел (ЭСОМ), гидрофобизатор калийный (ГФК), пластификатор нефтяной (ПН-6), мазут и отработанные масла различного назначения. ЭСОМ полу- 20 чают при очистке фенолом масляных фракций при перегонке мазута. Он представляет собой высокоароматизированное соединение масляного типа. ГФКпродукт переработки нефти, в котором 25 содержится 65% высокоароматических фракций и 35% легких и средних фракций нефти. Температура застывания не выше 30° C, плотность $0,965 - 0,99 \, \text{г/см}$ кинематическая вязкость при 100°C 15-25 сст., стоимость 26 руб/т.

ПН-6 (ГОСТ 12861-67) получают на нефтеперерабатывающих заводах путем добавления в остаточную высокоароматизированную фракцию легких и средных фракций экстракта селективной очистки масел в количестве до 15%. Температура застывания не выше 36°С, плотность 0,95 - 0,98 г/см³, стоимость 36 руб/т.

Продукты деароматизации масел представляют собой ароматические сое-динения, полученные в результате переработки нефтей западносибирских месторождений.

Мазут (ГОСТ 10585-75) является нефтяным топливом, предназначенным для котельных установок и промыштленных печей. Это тяжелый остаток после отгона из нефти топливных фракций. Свойства мазута изменяются в широких пределах в зависимости от исходной нефти. Условная вязкость при 50°С наменяется от 3,6 до 13°E, плотиость — от 0,88 до 0,95 г/см³, температура застывания — от —8 до +42°С.

Отработанные масла являктся отхогдом и представляют собой группу ма-

сел, применяемых для смазки всех видов передач различного промышленного оборудования. Условия работы этих масел разнообразны, поэтому в их состав вводят различные присадки. Отработанные масла состоят преимущественно из смесей дистиллятных и остаточных минеральных масел. В результате эксплуатации масла загустевают и подлежат замене. Некоторая часть отработанных масел подвергается регенерации, но значительный их объем выбрасывается.

В качестве омыляемых эмульгаторов с числом омыления от 95 до 250 мг КОН/г — жировой или масляный гудрон или кубовые остатки синтетических * жирных кислот (КО СЖК) или соапсток.

Масляный гудрон - отход, получаемый в процессе очистки жиров от примесей отстаиванием и фильтрацией с последующей дистилиялией продукта, содержит масла, карбоновые кислоты и механические примеси органического и неорганического типа.

Жировой гудрон — отход мыловаренного производства, получаемый после дистилляции жирных кислот в процессе расщепления твердых жиров. Основной его частью являются жирные кислоты, в качестве примесей присутствуют нерасшепленные глицерины, глицерин и другие вещества.

По внешнему виду гупроны представляют собой густую вязкую массу разной консистенции (от жидкотекучей до твердой) от темно-коричневого до черного цвета. Их физические свойства изменяются в широких пределах в зависимости от исходных продуктов и технологии получения. В качестве эмульгаторов могут быть использованы также другие гудроны (например, кислые гудроны переработки нефтей, гудроны соапстоков, вторые жировые гудроны и т.д.) при условии, что число их смыления находится в пределах от 95 до 250 мг КОН/г.

В качестве омылителя неорганического типа используют гидроокиси щелочных металлов (щелочи КОН или NaOH) или водорастворимые соди бикарбонатов щелочных металлов (кальцинированная сода, поташ).

Соотношение отдельных компонентов эмульсии обусловлено ее свойствами: реологической и седименталионной устойчивостью, дисперсностью, концент-

40

50

рацией дисперсной фазы, устойчивостью к коалесцениии. Оптимальное содержание гидрофобного протинопригарного материала (дисперсной фазы) в эмульсии находится в пределах от 10 до 55 мас. %.

Расход эмульгатора обусловлен требованиями к степени раздробленности дисперсной фазы, седиментационной 10 устойчивости и устойчивости к коалесценции.

При данном вещественном составе механизм формирования эмульски состоит в следующем. При взаимолействии 15 лагаемой противопригарной эмульсии эмульгатора и омылителя образуются натриевые или калиевые мыла жирных кислот с определенной (до 12 до 18 атомов углерода) длиной молекулярной цепи и неразветвленным строением. Указанные соединения в силу особенностей своего молекулярного строения являются весьмя эффективным защитным слоем, который надежно укрывает капли диспергированных противопригарных добавок. Таким образом создаются высо-'кодисперсные и устойчивые эмульски высоких концентраций.

Для приготовления данных эмульсий рекомендуется применять мягкую воду с числом жесткости около 8 мгэкв/л.

II р и м е р. Расчетное количество противопригарного материала (ПН-6) и эмульгатора (жирового гудрона) нагревают до жидкотекучего состояния $(50 - 60^{\circ}C)$ и смешивают до получения однородной массы (в течение 2-3 мин). Отвешенный омылитель - каустическую соду - растворяют в подогретой до 60 - 65°C воде. Количество воды для растворения омылителя подбирается с таким расчетом, чтобы полученный раствор имел концентрацию не ниже 3%. Жидкотекучую смесь противопригарного материала с эмульгатором равномерно заливают при непрерывном перемешивании в быстроходной (около 2000 об/мин) мешалке в горячий водный раствор омыпителя и после окончания загрузки смеси перемешивают 10 мин, после чего, если необходимо, добавляют оставшуюся воду и перемешивают еще 3 мин. Приготовленные таким образом эмульсии подвергаются технологическим испытаниям. Результаты испытаний приведены в табл. 1.

Аналогичные результаты получены при использовании эмульсий с масляными гудронами с различным числом омышения, приведены в табл. 2.

Составы и свойства эмульсий на основе мазута приведены в табл. 3.

Условная вязкость суспензий через 0.5 - 5 сут приведен в табл. 4. Как видно из представленных экспериментальных материалов условная вязкость предлагаемых составов эмульсий значительно ниже, чем известного и практически не изменяется в течение длительного промежутка времени.

Свойства при использовании предв формовочной песчано-глинистой смеси и в покрытии для кокилей приведены в табл. 5 и б.

Состав смеси для сырых форм,

20 мас.%:

30

35

Песок

Вода

Оборотная смесь 95 Освежающая добавка

2,5 (csepx 100) Эмульсия

77

При этом освежающая добавка содержит мас.%: 80,43

Бентонит 16,09 2,9 Гудрон Состав покрытия, мас. %: Наполнитель (тальк) 15 Жидкое стекло 3 Эмульсия № 3 по табл. 5

Краска имеет удельный вес /1120 kr/m 3 и наносится на кокиль с теплоизоляционным покрытием при 40 350°С пульверизатором.

Использование предлагаемого изобретения позволяет благодаря высокой устойчивости при длительном хранении противопригарной эмульсии к процессу 45 коалесценции или расслоенню лучше рассредоточивать эмульсию в процессе смесеприготовления и вводить ее при этом в меньшем количестве, а также получают отливки из чугуна практи-50 чески без пригара.

Формула изобретения

1. Состав противопригарной эмуль-₅₅ сии для литейного производства, включающий гидрофобный материал, выбранный из группы экстракта послефенольной очистки масел или мазута, или минерального масла, эмульгатор, воду, отличающийся тем, что, с целью повышения равномерности распределения эмульсии в объеме песчано-глинистых смесей или жидкостекольных красок за счет повышения устойчивости к коалесценции и расслоению, состав в качестве эмульгатора содержит омыляемые соединения с числом омыления 95 - 250 мг КОН/г и помомыления 95 - 250 мг КОН/г и пололнительно и омылитель неорганического типа, выбранный из группы гидроокисей шелочных металлов или водорастворимых солей бикарбонатов щелочных металлов при следующем соот 15 ношении ингредиентов, мас. %:

Гидрофобный материал, выбранный из группы экстракта послефенольной очистки масел или мазута, или минерального масла

10 - 55

Омыляемые соединения

омыления 95 - 250 мг КОН/г 3 - 55
Омылитель неорганичест кого типа, выбранный из гидроокисей щелочных металлов или водорастворимых солей бикарбонатов щелочных металлов 0,3 - 1,5
Вода Остальное

- 2. Состав по п.1, о т л и ч а ющ и й с я тем, что в качестве омыляемых соединений с числом омыления 95 - 250 мг КОН/г состав содержит жировой или масляный гудрон, или кубовые остатки синтетических жирных кислот, или соапсток.
- 3. Состав по п.1, о т л и ч а ющ и й с я тем, что гидрофобный противопригарный материал, эмульгатор и омылитель имеют следующее соотношение соответственно, мас. %: (4-18):1: 25:(0,1-0,5).

Таблицаі

Компоненты, мас. %		Эмульсии					
и свойства							
		*		J			
пн-6	10	20	40	55			
Каустическая сода	0,3	0,5	1,0	1,5			
Жировой гудрон							
(4.o. 110 mr/r)	3	5	10	15			
ДР-РАС	-	-	-	-			
Вода	86,7	74,5	49	28,5			
Средний размер ка-							
пель, имкм	10	7	7	7			
Состояние через 5 ч.							
пена	Нет	Нет	Нет	Незначи- тельная			
козпесценция	Нет	Нет	Нет	Нет			
расслоение	Нет	Нет	Нет	Нет			
загустение	Нет	Нет	Нет	Нет			

Состояние через 24 ч

*		Π	родолже	ние таб	n.1		
Компоненты, мас.% и свойства		Эмульсии					
		.					
пена	Нет	Не	г Нет	Нет			
коалесценция	Нет	He	г Нет	Нет			
расслоение	Нет	He	г Нет	Нет			
загустение	Нет	He	т Нет	Нет в бли			
Компоненты и свой-		Эму	льсии		ца 2		
	<u> </u>	2	3	4	5		
ГФК-1	40	40	40	40	40		
Сода кальцинирован- ная	1	1	1	1 ·	1		
Масляный гудрон							
ч.о. 85	10	-	-	-	-		
ч.о. 95	-	10	-	-	-		
ч.о. 150	-	-	10	-	-		
ч.о. 250	-	-	-	10	-		
ч.о. 300	-	-	-	- -	10		
Вода	49	49	49	49	49		
Коалесценция							
_		- Нет	Нет	Нет	Нет		
через 24 ч — З т	ая начи- ель- ая	Нет	Нет	Нет	Нет		
Расслоение							
через 5 ч Е	сть	Нет	Нет	Нет	Нет		
т	начи- ель- ое	Нет	Нет	Нет	Нет		
Загустение через 5 ч Н	ет	Нет	Нет	Нет	Зам		
•	er		Нет	Нет	Зна		

T		-					_
1	- 23	n	п	u	7.7	a	1

таолицаз						
Компоненты, мас.	Эмульсии					
	1	2	3	4	5	6
	L					
Мазут М 100	10	10	20	40	55	55
Ноташ	0,2	0,3	0,5	1,0	1,5	2,0
Соапсток (ч.о.130)	2	3	5	10	15	20
Вода	87,8	86,7	74,5	49	28,5	23
Средний дисметр канель, мкм	15	7	5	5	6	8
Состояние через 5 ч						
пена	Нет	Нет	Нет	Нет	Нет	Есть
ки динедоекьом	Незна- чи- тель- чая	Нет	Нет	Нет	Нет	Her
расслоение	Незна- чи- тель- ное	Нет	Нет	Нет	Нет	Нет
загустенне	Нет	Нет	Нет	Нет	Нет	Heτ
Состояние через 24 ч						
нена	Нет	Нет	Нет	Нет	Нет	Нет
коалесценция	Не- л боль- квш	-Нет	Нет	Нет	Нет	Нет
расслоение	Не- боль- шое	Нет	Нет	Нет	Нет	Нет
загустение	Her	Нет	Нет	Нет	Нет	Есть

Таблица 4

			Venerual property a vener					
	Компоненты эмульсий	Содержа-	Условная вязкость, с, через					
		0,5 ч	l cyr.	3 сут.	5 сут.			
1	ГФК - 1 Сода Гудрон Вода	10 0,3 3,0 86,7	11,0	11,0	11,2	11,5		
2	ГФК - 1 Сода Гудрон Вода	40 1,0 10 49	12,3	12,2	12,5	13,0		
3	ГФК - 1 Сода Гудрон Вода	55 1,5 15 28,5	16,5	16,7	.16,7	18,0		
4	Мазут М100 Поташ Соапсток Вода	10 0,3 3,0 86,7	11,3	11,2	11,3	11,3		
5	Мазут Поташ Соапсток Вода	40 1,0 10 49	12,9	13,0	13,0	13,5		
6	Мазут Поташ Соапсток Вода	55 1,5 15 28,5	17,0	17,0	17,3	17,7		
7	ПН - 6 Сода Гудрон Вода	10 0,3 3,0 86,7	12,0	12,3	12,3	12,8		
8	ПН - 6 Сода Гудрон Вода	40 1,0 10 49	13,7	14,0	14,0	14,5		
9	ПН - 6 Сода Гудрон Вода	55 1,5 15 28,5	17,8	18,0	18,5	22,0		

	142	2 3 250 1	ја Саблица 5
Свойст ва см еси отливок	И	Едини- цы из- мере- ния	Состав смеси эмульсией № 3 по табл. 1
		~	N+3
Влажность		7.	3,4
Сырая прочность на сжатие		Мла	0,135
Содержание угле рода		%	0,75
l'asa.	С	м ³ /г	4,5 - 5
Наличие пригара на отливках	3	%	0 - 2
			 Габлина 6
Свойства		1 иницы мерения	Состав покрыти
Свойства Количество съемов		инипрі	по табл. 1
Количество	из:	иницы мерения	Состав покрыти с эмульсией М по табл. 1

Редактор И.Касарда	Составитель И,Куни Техред М.Ходанич	,	Л.Патай	
по де	Тираж 741 Государсивенного к елам изобретений и осква, Ж-35, Раушск	открытий	5	