SU (1) 1439148 A 1

(5D 4 C 22 C 37/10

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО-ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 4263128/31-02
- (22) 15.06.87
- (46) 23.11.88.5mπ. № 43
- (71) Белорусский политехнический институт
- (72) М.М.Бондарев, В.М.Михайловский, В.М.Королев, С.В.Киселев и Ю.М.Шамов
- (53) 669.15-196 (088.8)
- (56) Авторское свидетельство СССР № 1036786, кл. С 22 С 37/06, 1982. Авторское свидетельство СССР
- № 1104180, кл. C 22 C 37/00, 1985. (54) ЧУГУН
- (57) Изобретение относится к металлургии и может быть использовано

іпри производстве отливок, работающих в условиях высоких температур в газовой атмосфере. Цель изобретения повышение окалиностойкости и ростоустойчивости при нагреве до 700-950°С и длительной выдержке. Новый чугун содержит компоненты в следующем соотношении, мас. 7: С 3,2-3,6; Si 2,3-3,0; Mn 0,1-0,4; Mo 0,1-0,35; Sb 0,05-0,1; Ni 1-2,0; Ca 0,001-0,02; A1 0,5-0,9; Hf 0,06-0,38 и Fe остальное. Дополнительный ввод в состав чугуна Al и Hf обеспечит повышение окалиностойкости в -1,5-3,8 раза и ростоустойчивости в 1,4-4,2 раза. 2 табл.

Изобретение относится к металлургии, в частности к разработке составов чугуна для отливок, работающих в условиях длительного нагрева до температур 950°С в газовой атмосфере.

Цель изобретения - улучшение окалиностойкости и ростоустойчивости при нагреве до температур 700-950°С и длительной выдержке.

Выбор граничных пределов содержания компонентов в чугуне предлагаемого состава обусловлен следующим.

Содержание углерода и кремния выбирают, исходя из требования необходимой графитизации сплава. Нижние пределы по углероду (3,2 мас.%) кремнию (2,3 мас.%) установлены для нсключения отбела в отливках. Увеличегие концентрации углерода (до 20 3,6 мас. %) и кремния (до 3,0 мас. %) способствует кристаллизации расплава по стабильной диаграмме без структурно-свободных карбидов. Повышение кремния (свыше 3,0 мас. %) пластичность чугуна вследствие легирования последним феррита, что при эксплуатации отливок в условиях ударных нагрузок (например, колосниковые решетки) ведет к их поломке. Добавка ; 30 углерода свыше 3,6 мас.% приводит к флотации графита и созданию рыхлот внутри отливок, которые инициируют окисление металла.

Соединения молибдена модифициру— от окисную пленку на поверхности чу- гуна, упрочняя ее. В процессе пасси- вации соединения молибдена внедряются в нассивную пленку и адсорбируются на стенках коррозионных язв, тормозя их рост. Нижний предел содержания молиб-дену (0,1 мас.%) не оказывает существенного влияния на скорость газовой коррекции. Добавка молибдена свыше 0,35 мас.% приводит к образованию 45 карбидов и объединению матрицы последним, что отрицательно сказывается на процессе упрочнения окисной пленки.

Наличие никеля в пределах 1,0-2,0 мас. % совместно с марганцем (0,1-0,4 мас. %) и молибденом позволяет получить твердый раствор с фаством мелких дисперсных карбидов сложного состава, расположенных внутри эвтектических зерен, которые при длительной выжержке в интервале температур 650-950°С растворяются в матрице и дополнительно и тируют ее.

Оптимальное соотношение марганца и никеля в сплаве составляет 4:1 и 1:3,5.

Кальций, обладая большим средством к сере, кислороду, водороду, азоту и фосфору, препятствует взамимодействию алюминия с данными элементами и образованию неметаллических включений на границах зерен при затвердевании сплава. Добавка кальция в количестве 0,001-0,02 мас. % достаточна для существенного снижения концентрации сульфидов, оксидов, гидратов и нитридов в твердом растворе & фазы.

Ввод кальция более 0,02 мас.% эко-

Алюминий уменьшает образование цементита в структуре сплава. Концентрация алюминия менее 0.5 мас.% не обеспечивает повышения окалиностой-кости и ростоустойчивости сплава. При добавке алюминия более 0,9 мас.%, несмотря на повышение окалиностойкости вследствие пассивации поверхности чугуна тугоплавким соединением $Al_2 0_3$, наблюдается снижение ростоустойчивости.

При введении в состав чугуна гафния происходит глубокое рафинирование сплава и повышение окалиностойкости. Образцы сплава, не содержащего гафний, показали более значительную потерю веса вспедствие окисления по сравнению с гафнийсодержащим сплавом. На поверхности чугуна, содержащего алюминий и гафний, формируется при высоких температурах окалина, содержащая Al₂O₃ и HfO₂. С повышением температуры окисленные включения Нf0, приобретают более отчетливую конфигурацию прожилок, прорастающих в металлическую основу сплава, разуя прочную монолитную защитную пленку на его поверхности. Нижний предел содержания гафния в чугуне (0,06 мас.%) установлен образованием прочной окисной пленки. С повышением содержания гафния до 0,38 мас. % адгезия окалины на сплаве повышается вследствие увеличения количества оксида гафния, прорастающего в матрицу сплава. Увеличение добавки гафния (свыше 0,38 мас.%) не дает дальнейшего повышения окалиностойкости чугуна.

П р и м е р. Для получения чугунов выплавляют три состава чугуна на инж-

15

30

35

нем, среднем и верхнем уровнях содержания компонентов и известный сплав при среднем содержании компонентов.

Химический состав известного и предлагаемого составов чугуна приведены в табл.1.

Плавки проводят в индукционной печи с кварцитовой футеровкой.

В качестве шихтовых материалов используют литейные и передельные чугуны, стальной лом, ферросплавы и легирующие добавки: ферромолибден (62% мо), грапулированный никель (97,6% мі), металлический марганец (95,0% мп), ферросилиций (78% Si), сурьму (99,6% Sb), алюминий, силикокальций (33,5% Ca).

Гафний вводят в печь за 8-10 мин до окончания плавки в виде ферро- 950°С при длитель гафния (21% llf) с последующим выпустий при следующим выпусти на. Температура разливки 1320-1360°С. 25 Заливают пробы, из которых вырезатизми окалиностой кости и ростоустойчивости чугуна, а мастаний окалиностой Кремний марганец также металлографического анализа.

Окалинообразование определяют весовым методом на образцах К 25 при 700 и 950°С в течение 500 и 1000 ч в газовой среде. В качестве нагревательного агрегата используют проход-

ную камерную печь образцы в которой подвешивают на проволоке.

В табл.2 приведены показатели окалиностойкости и ростоустойчивости при 700 и 950°С. Время испытаний 50 и 1000 ч для каждой температуры.

Как следует из табл.2, дополнительный ввод в состав чугуна A1 и Нf обеспечивает повышение в 1,5-3,8 раза окалиностойкости и в 1,4-4,2 раза ростоустойчивости.

Формула изобретения

Чуѓун, содержащий углерод, кремний, марганец, молибден, сурьму, нижель, кальций и железо, о т л и - ч а ю щ и й с я тем, что, с целью повышения окалиностойкости и ростоустойчивости при нагреве до 700-950°С при длительной выдержке, он дополнительно содержит алюминий и гафний при следующем соотношении компонентов, мас. %:

Углерод	3,2-3,6
Кремний	2,3-3,0
Марганец	0,1-0,4
Молибден	0,1-0,35
Сурьма	0,05-0,1
Никель	1,0-2,0
Кальций	0,001-0,02
Алюминий	0,5-0,9
Гафний	0,06-0,38
Железо	Остальное

Таблица 1

Чугун		Уровень со-	Содержание компонентов, мас.%									
		держания ком- понентов	С	Si	Mn	Мо	Sb	Ni	Ca	A1	Hf	Fe
Известный		Средний	3,2	1,8	0,023	0,25	0,08	1,5	0,01	1 -		Осталь ное
Предлаг мый	ae- I	Нижний	3,2	2,3	0,1	0,1	0,05	1,0	0,00	1 0,5	0,06	511-
	2	Средний	3,4	2,65	0,25	0,23	0,07	1,5	0,01	0,7	0,22	2**
	3	Верхний	3,6	3,0	0,4	0,35	0,1	2,0	0,02	0,9	0,38	3 -11-

Таблица 2

Чугун	Окалин темпер	остойкост атуре, °С	ь, г/м ² .	ч, при	Ростоустойчивость, % роста, при температуре °C				
	700		950		700		950		
	500 ч	1000 ч	500 ч	1000 ч	500 ч	1000 ч	500 ч	1000. ч	
Известный	0,1	0,9	0,95	1,24	0,09	0,25	0,16	0,38	
Предлагае [.] мый і		0,34	0,3	0,6	0,065	0,07	0,075	0,09	
2	0,065	0,26	0,24	0,38	0,04	0,045	0,06	0.07	
3 ,	0,064	0,24	0,20	0,32	0,04	0,06	0,07	0,08	

Составитель Н.Косторной
Редактор Н.Гунько Техред Л.Сердюкова Корректор Н.Король

Заказ 6042/26 Тираж 595 Подписное

ВНИИПИ Государственного комитета СССР
по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-полиграфическое предприятие, г. Ужгород, ул. Проектная, 4