(19) SU(11) 1463788 A 1

CD 4 C 22 C 38/32

ГОСУДАРСТВЕННЫЙ НОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТНРЫТИЯМ ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 4301399/31-02
- (22) 27.08.87
- (46) 07.03.89. Бюл. № 9
- (71) Белорусский политехнический институт
- (72) Е.И. Понкратин, С.А. Павловская, В.Е. Ливенцев и В.Т. Терещенко (53) 669.14.018.25-194(088.8)
- (56) Сталь 4Х5МФС. ГОСТ 5950-73. Авторское свидетельство СССР № 1129266, кл. С 22 С 38/32, 1984.
- (54) ШТАМПОВАЯ СТАЛЬ
- (57) Изобретение относится к области металлургии, в частности к азотиру-емой штамповой стали алюминиевых и медных сплавов. Цель изобретения повышение теплостойкости азотиро-ванного слоя при 600°С, сопротивле-

ния образованию трещин разгара после азотирования, ударной вязкости при 600°С и технологической пластичности. Сталь дополнительно содержит барий при следующем соотношении компонентов, мас. %: углерод 0,38-0,46, кремний 0,15-0,38, марганец 0,15-0,48, хром 3,6-4,4, молибден 0,9-1,2, ванадий 0,4-0,8, алюминий 0,12-0,42, титан 0,005-0,1, бор 0,0008-0,008, кальций 0,005-0,05, барий 0,005-0,05, железо остальное. При этом содержание кальция, бария, титана и бора удовлетворяет соотношениям кальций =0,9...1,1; ...12,5. Применение стали позволяет повысить срок службы штампов. 2 табл.

Изобретение относится к металлургии, в частности к азотируемой штамновой стали для пресс-форм литья под давлением алюминиевых и медных сплавов, и может быть использовано в металлургической и машиностроительной промышленности.

Целью изобретения является повышение теплостойкости азотированного слоя при 600° С, сопротивления образованию трещин разгара после азотирования, ударной вязкости при 600° С и технологической пластичности.

Химический состав опытных плавок приведен в табл.1.

Свойства сталей определяют на образцах, термообработанных по следующему режиму: закалка с 1040°С, масло, отпуск 690°С, 1,5 ч, второй отпуск 580°С, 1,5 ч. Азотирование: 520°С, 16 ч, степень диссоциации аммиака 25-30%, 620°С, 0,5 ч без аммиака и 520°С, 4,5 ч без аммиака.

Сопротивление образованию трещин разгара оценивают по количеству циклов до появления первой трещины при циклировании по режиму 650°C == 20°C.

Технологическую пластичность оценивают по количеству оборотов до разрушения при 1100°С разрывных образцов с диаметром рабочей части 5 мм.

Ударную вязкость определяют по стандартной методике. Теплостойкость оценивают по мик — ротвердости после нагрева до 600° C, в течение 4 ч.

Результаты испытаний приведены в табл. 2.

Результаты испытаний свидетельствуют о преимуществе предлагаемой стали, обладающей наилучшим комплексом свойств.

Выплавка стали на основе железа прямого восстановления позволяет значительно повысить работоспособность пресстформ — количество циклов до возникновения первых трещин, что .15 существенно влияет на качество изпрелий.

Формула изобретения

Штамповая сталь, преимущественно для азотирования, содержащая углерод, кремний, марганец, хром, молибен, ванадий, алюминий, титан, бор, кальций, железо, о т л и ч а ю щ ая с я тем, что, с целью повышения теплостойкости азотированного слоя

при 600°С, сопротивления образованию трещин разгара после азотирования, ударной вязкости при 600°С и техно-погической пластичности, она дополнительно содержит барий при следующем содержании компонентов, мас. 7:

Углерод	0,38-0,46
Кремний	0,15-0,38
Марганец	0,15-0,48
Хром	3,6-4,4
Молибден	0,9-1,2
Ванадий	0,4-0,8
Алюминий	0,12-0,42
Титан	0,005-0,10
Бор	0,0008-0,008
Каль ций	0,005-0,05
Барий	0,005-0,05
Железо	Остальное

причем содержание кальция, бария, титана и бора удовлетворяет соотношениям:

$$\frac{Ca}{Ba} = 0,9...1,1,$$

$$\frac{Ti}{B} = 6,25...12,5.$$

таблица і

Coctab		Содержание элементов, нас.2											
	C	5i	Mn	Cr	Ко	v	A1	Ti	В	Ca	Ba	P3M	Pe
			•		_				· ;				
			1 71		Іреплагаем								
	0,38	0,38	0,40	4,4	0,9	0,8	0,28	0,005	0,0008	0,005	0,005	- '	Остальное
. 2	0,40	0,15	0.48	3,8	1,2	0,4	0.24/	0.02	0,002	0.005	0.005	-	_H_
3	0.40	0.25							0,007				_#_
4 .	0,46	0,22	0,24	3,8					0,008	0,01	0,01		_#_
			•		Нэвестная	СТАЛЬ							: .
5	0.4	0,80	0.80	2.0	0,9	0.48	0.1	0.01	0.01	0,005	17 -	0.17	

Содержание серы и фосфора в составах 1-4 не более 0,012%, в составе 5 содержание серы 0,26%, фосфора 0,25%, в составах 1-4 выплавляют на основа железа прямого восстановления.

Плавка	кость,	Количество циклов до 1-й трещины	КСV при 600°С жДж/м ²	Техноло- гическая пластичность, число оборо- тов до разру- шения (при 1100°C)
1	9,8	400	960	38
2	9,6	420	960	38
3	9,6	400	940	34
4	9,7	430	900	30
5	8,0	200	690	26