(19) SU (1) 1537692 A 1

(51)5 C 21 C 1/00

ГОСУДАРСТВЕННЫЙ НОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТНРЫТИЯМ ПРИ ГННТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4415642/31-02

(22) 28.12.87

(46) 23,01,90, Front, № 3

(71) Белорусский политехнический институт и Уральский политехнический институт им. С.М.Кирова

(72) С.Н. Леках, Ю.П. Белый,

Л.Л. Счисленок, В.В. Терентьев,

В.А. Никоненков, А.Н. Гусев

и В.П. Василенко

(53) 621.745(088.8)

(56) Авторское свидетельство СССР № 624921, кл. С 21 С 1/00, 1977.

Авторское свидетельство СССР № 1359305, кл. С 21 С 1/00, 1985.

(54) СПОСОБ ПОЛУЧЕНИЯ ЧУГУНА

(57) Изобретение относится к металлургии и может быть использовано при производстве чугунных отливок. Цель изобретения - получение равномерной твердости в тонкостенных отлив-

2 ках, снижение себестоимости чугуна при сохранении уровня механических свойств. Предложенный способ получения чугуна включает загрузку в плавильный агрегат передельного чугуна, углеродистого полупродукта и собственного возврата, перегрев расплава до 1580-1650°C, модифицирование расплава лигатурой, содержащей релкоземельные элементы на 1-й стадии. и ферросилицием - на 2-й. Использование в качестве компонента шихты углеродистого полупродукта (С > 3,5%, Si, Mn, Cr и до V 0,1%, Ті до 0,03% и Fe - остальное) в количестве 5-30% от массы шихты, ввод в расплав РЗМ цериевой группы и простратизирующее модифицирование ферросилицием позволяют получить равномерную твердость в различных сечениях отливок. 2 з.п.ф-лы, 2 табл.

Изобретение относится к металлургии, в частности к разработке способов получения чугуна для тонкостенных отливок - поршневых колец.

Цель изобретения - получение равномерной твердости в тонкостенных отливках, снижение себестоимости чугуна при сохранении уровня механических свойств.

Использование в шихте углеродистого полупродукта, чистого по содержанию кремния и марганца, взамен традиционных доменных чугунов позволяет полностью использовать образующийся собственный легированный возврат. При этом снижается расчетная добавка легирующих элементов и за счет более однородного распределения основной части легирующих элементов в собственном возврате по сравнению с высокопроцентными тугоплавкими ферросплавами никеля, ванадия, хрома и молибдена облегчается получение микрооднородного по легирующим элементами жидкого чугуна. Это имеет решающее значение для получения в особо тонкостенных отливках однородной твердости и структуры.

Углеродистый полупродукт, содержащий, %: углерод 3,5-4,5; кремний 0,020,1; марганец 0,02-0,1; хром 0,02-0,1; ванадий 0,02-0,1; титан 0,01-0,1 железо остальное, получают при переработке ванадийсодержащих титаномагнетитовых руд на феррованадий путем продувки воздухом (кислородом) в конвертере передельного ванадиевого чугуна при низких температурах с присадкой окислителя - охладителя (агло- 10 мерата). Режим продувки обеспечивает максимальную степень окисления кремния и деванацию Полученный углеродистый полупродукт в основном используется для дальнейшего передела 15 в сталь при мартеновской плавке.

Составы углеродистого полупродукта, зависящие от режима продувки, приведены в табл.1.

Наиболее оптимальным для предлага- 20 емого способа выплавки является состав 2, содержащий, %: углерод 3,5-4,5; кремний 0,02-0,1; марганец 0,02-0,1. Наличие в его составе 0,02-0,1% хрома, 0,02-0,1% ванадия и 0,01-0,1% 25 титана в значительной степени обеспечивает требуемый уровень легирования чугуна указанными элементами.

Вместе с тем, вследствие своей природы получения он дополнительно насы- 30 щен газами (кислород и азот), что не обеспечивает требуемого качества отливок. Поэтому предусмотрен предварительный перегрев расплава, полученный на основе углеродистого полупродукта и собственного возврата до 1580-1650 С, который обеспечивает высокую микрооднородность расплава, полное растворение и равномерное распределение легирующих элементов по объему расплава. Активное кипение расплава способствует удалению крупных неметаллических включений и растворению дисперсных частиц. Это создает благоприятную ситуацию для восприятия последующего двухстадийного модифицирования. Измерение активности растворенного кислорого (ф.) показало, что при предварительном перегреве до 1580-1650°C а составляет (4-6) \cdot 10⁻⁴ и резко снижается до (1,5-2) \cdot 10⁻⁴ за счет ввода активных элементов (РЗМ) при первой стадии модифицирования выше температуры равновесия тигельной реакции. Для чугунов, из которых изготавливают поршневые кольца, температура равновесия тигельной реакции составляет 1360-1400°С. Многократный переплав соб-

ственного возврата снижает восприимчивость расплава к последующему модифицированию. Применение углеродистого полупродукта в совокупности с дополнительным перегревом до предложенного диапазона температур позволяет повысить восприимчивость к последующему двухстадийному модифицированию.

Нижний предел температуры перегрева (1580°C) необходим для достижения требуемой однородности расплава и активности кислорода при использовании шихты на базе углеродистого полупродукта. Выше верхнего предела (1650°С) данный эффект не прирастает, однако, возрастает угар углерода, увеличиваются энергозатраты, износ футеровки печей.

Последующая двойная обработки (выше и ниже температур равновесия тигельной реакции) обеспечивает высокий графитизирующий эффект. Пределы ввода углеродистого полупродукта определяются выходом годного при литье поршневых колец (нижний предел 1-10), а также повышенным расходом кремния и других ферросплавов (верхний предел 1-5).

Испытания проводят при плавке чугуна, содержащего, %: С 3,5-3,8; Si 2,3-2,8; Mn 0,5-0,8; Cr 0,2-0,4; Ni 0,15-0,35; Mo 0,3-0,5; Р 0,3-0,6, в индукционной печи емкостью 40 кг.

Способ осуществляют следующим образом.

В индукционную печь загружают шихтовые материалы, состоящие из углеродистого полупродукта литейного чугуна и возврата собственного производства в определенном отношении. Расплав перегревают до 1580-1650°C, вводят при данной температуре тугоплавкие легирующие присадки: ферромолибден - 50% молибдена, феррохром -75% хрома, ферромарганец - 75% марганца, феррованадий - 55% ванадия. Далее расплав подстуживают до температуры первой стадии модифицирования, переливают при 1460°C в промежуточный ковш, в котором обрабатывают 0,05%-ным комплексным модификатором, содержащим 30% РЗМ (цериевой группы), 5% бария, 1% стронция, подстуживают до температуры второй стадии (1380°C) и при переливе в разливочный ковш вводят 0.5%

ферросилиция (ФС-75). Далее производят заливку форм.

Заливают специальные пробы сече-√чением 4≰4 мм, длиной 100 мм в сырые формы через один торцовый питатель. Такая проба позволяет имитировать условия изготовления тонкостенных отливок типа поршневых ределяют разброс значений твердости по длине образца в пяти точках по 10 образцам,

Свойства чугуна, полученные по предлагаемому и известному способам, представлены в табл.2.

Как следует из приведенных данных. предлагаемый способ получения чугуна позволяет благодаря использованию в качестве компонента шихты углеродистого полупродукта перегрева расплава перед модифицированием получить равномерную твердость в различных сечениях поршневых колец, снизить себестоимость 1 т чугуна.

Формула изобретения

1. Способ получения чугуна, преимущественно для заготовок поршне-

вых колец, включающий загрузку шихты в плавильный агрегат, доводку расплава до заданной температуры, модифицирование расплава церийсодержащим веществом на первой стадии и кремнийсодержащим веществом на второй стадии, отличающийся тем, что, с целью получения равномерной твердости колец. Исследуют микроструктуру и оп- 10 в поршневых кольцах, снижения себестоимости чугуна, в шихту вводят 5-30% углеродистого полупродукта, а расплав перед модифицированием перегревают до 1580-1650°C.

> 2. Способ по п. 1, отличающийся тем, что углеродистый полупродукт содержит ингредиенты в следующем соотношении, мас. %:

20	Углерод	3,5-4,5
	Кремний	0,02-0,10
	Марганец	0,02-0,10
	Хром	0,02-0,10
	Ванадий	0,02-0,10
25	Титан	0,02-0,10
	· Железо	Остальное

3. Способ по п. 1, о тличающийся тем, что в качестве кремнийсодержащего вещества используют 30 ферросилиций.

Таблица 1

Способ	Содержание шихты, %			Температура модифицирования, °C				
		Литей- ный чугун	Пере- дель- ный чугун	Собст- венный возврат	Полупро- дукт уг- лероди- стый	Пере- грев	I стадия	II стадия
Известный		20,0	30,0	50,0	-	1480	1460	1380
Предла мый	arae-	25,0	_	70.0	5,0	1580	1460	1380
	2	15,0	-	70,0	15,0	1620	1460	1380
	3	-	-	70,0	30,0	1650	1460	1380

П р и м е ч а к и е. Согласно известному способу в качестве модификатора используют сплав, содержащий, мас. X: РЗМ 30; Ва 5; Sr I; Si и Fe остальное,

Таблица 2

Способ	,	Свойства						Снижение
	HRE	HRB		Предел	Остаточ-	Условный	Отбел,	себестои-
	у "замка" кольпа	у днамет- рально противопо- ложного "замку" кольца	маль- ный разброс, НРВ	прочно- сти при изгибе, кгс/см ²	ная де- формация ₃ %	модуль упруго- сти, Е, кгс/мм ⁴	мм	руб./т чугуна
Звест	 r-	- 4	J	L			· E' · · · · · · · · · · · · · · · · · ·	
ωй	89	95	6	34,5	5,0	9500	4	450,42
Гредла	arae-							
иы#	1 96	100	4	36,0	3,0	10500	4	389,13
	2 98	101	3	38,0	2,0	11000	5	362,96
	3 104	107	3	37,5	3,5	9800	5	361,49

Составитель Н. Косторной

Редактор Н.Рогулич

Техред Л. Сердюкова Корректор М. Пожо

Заказ 282

Тираж 501

Подписное

ВНИИЛИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-издательский комбинат "Патент", г.Ужгород, ул. Гагарина,101