SU₍₁₎ 1509422 A 1

(5) 4 C 23 C 12/00

ГОСУДАРСТВЕННЫЙ НОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТНРЫТИЯМ ПРИ ГННТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4295108/31-02

(22) 10.08.87

(46) 23.09.89. Бюл. № 35

(71) Белорусский политехнический институт

(72) В.А.Стефанович и Е.И.Панкратин

(53) 621,793,669,586,5 (088,8)

(56) Авторское свидетельство СССР № 779442, кл. С 23 С 8/80, 15.11.80.

(54) СПОСОБ УПРОЧНЕНИЯ СТАЛЬНЫХ ИЗ-ДЕЛИЙ

(57) Изобретение относится к металпургии, а именно к химико-термической обработке стальных изделий, и
может быть использовано в машиностроении в инструментальном производстве для повышения эксплуатационных свойств рабочих поверхностей формообразующего инструмента, преимущественно пресс-форм для литья под давлением цветных сплавов. Цель — повышение разгаростойкости рабочей поверхности изделий и их долговечности. Способ включает диффузионное ни-

келирование при насыщении в порошковой смеси, содержащей, мас. 7: никель 10-15; окись алюминия 20-35; хлористый аммоний 2-4; железо 46-48, химико-термическую обработку, закалку и отпуск. Отжиг осуществляют в течение времени, необходимого для получения на поверхности изделий слоя повышенной вязкости и пластичности глубиной (Д), равной или большей суммы глубин диффузионного слоя (8) и зоны повышенной вязкости и пластичности (s), образующейся под диффузионным слоем после проведения химико-термической обработки. Глубина зоны s должна удовлетворять условию

s > $\frac{1}{2\pi}$ $(\frac{\mathrm{K}_{\mathrm{AC}}}{\mathrm{G}_{\mathrm{0,2}}})^2$. Обработка по пред-

лагаемому способу позволяет увеличить разгаростойкость стальных изделий по сравнению с известным в 1,8-2,0 и более раз, долговечность прессформ при литье латуни ЛКС 80-3-3 увеличивается в 2,5-3,5 раза, а при литье алюминиевого сплава АЛ-32 - в 1,8 раза, 2 табл.

Изобретение относится к металлургии, а именно к химико-термической обработке стальных изделий, и может быть использовано в машиностроении в инструментальном производстве для повышения эксплуатационных свойств рабочих поверхностей формообразующего инструмента, например пресс-форм для литья под давлением цветных сплавов.

Цель изобретения - повышение разгаростойкости рабочей поверхности изделий и их долговечности.

Способ включает диффузионное никелирование при насыщении в порош-ковой смеси при следующем соотношении компонентов, мас. %:

Никель Окись алюминия 10-15

20-35

Аммоний хлористый 2-4 Железо 46-68

химико-термическую обработку, закалку и отпуск. Диффузионное никелирование осуществляют в течение времени, необходимого для получения на поверхности изделий слоя повышенной вязкости и пластичности глубиной (Δ), равной или большей суммы глубин диффузионного слоя (δ) и зоны повышенной вязкости и пластичности (S), образующейся под диффузионным слоем после проведения химико-термической обработки. Глубина зоны должна удов-

летворять условию
$$S \ge \frac{1}{2n} \left(\frac{K_{4c}}{C_{02}} \right)^2$$
.

Взаимодействие компонентов смеси со стальной поверхностью приводит к образованию обезуглероженного поверхностного слоя с одновременным насыщением никелем, который повышает ударную вязкость поверхностного обезуглероженного слоя. После химико-термической обработки на поверхности образуется диффузионный слой заданной глубины затем инструмент закаливают и подвергают отпуску. После такой обработки изделий образуются 3 зоны: зона 1 - диффузионный слой, обладающий повышенной твердостью, тепло- и износостойкостью глубиной δ , зона 2 повышенной вязкости и пластичности глубиной δ, зона 3 - основной металл с высокой твердостью, прочностью и теплостойкостью.

Наличие зоны повышенной вязкости и пластичности задерживает распространение возникающих в диффузионном слое трещин.

Локализация трещин в зоне повышенной вязкости и пластичности приводит к повышению разгаростойкости рабочей поверхности. Кроме того, наличие этой зоны повышает ударную вязкость за счет увеличения работы распространения трещины, образовавшейся в диффузионном слое в момент удара.

Исходя из положений механики разрушения необходимо, чтобы глубина данной вязкой зоны (s) была больше размера зоны пластической деформации из вершины трещины в условиях – Γ_{y} , который определяется из соотношения

$$\Gamma_{y} = \frac{1}{2\pi} (\frac{K_{1c}}{G_{0.2}})^{2},$$

где K с - вязкость разрушения при деформации;

O_{0,2} - предел текучести при растяжении гладкого образца.

Таким образом, для того, чтобы не происходило распространение трещины, необходимо, чтобы толщина зоны повышенной вязкости и пластичности была не менее Γ_y , т.е. $S \gg \Gamma_y$, а следовательно, $S \gg \frac{1}{2^n} (\frac{K_{4c}}{G_{0,2}})^2$, в против-

ном случае движение трещины тормозиться не будет.

Пример 1. Исследования разгаростойкости и долговечности проводят на образцах и пресстформах, изготовленных из стали ЗХЗМЗФ, имеющей следующие механические свойства после закалки с 1040° С и отпуска при 600° С: $G_{0,2} = 1500$ МПа, К $_{10} = 45$ МПа $\sqrt{\rm M}$, следовательно S ≥ 0,15 мм.

Разгаростойкость оценивают на образцах диаметром 30 мм и толщиной 5 мм по глубине образующихся трещин после 8000 циклов: в режиме нагрев 650° C (свинец), охлаждение 50° C (вода).

Полговечность пресс-форм оценивают по количеству отливок из латуни ЛКС 80-3-3 детали типа "втулка с фланцем" без ухудшения качества. Образцы и пресс-формы подвергают отжигу в контейнере с плавким затвором в порошковых смесях, состав которых приведен в табл. 1: при 1000°С в течение б ч. После отжига проводят химико-термическую обработку - борирование из обмазок следующего состава: карбид бора - 70% + окись хрома - ~25% + фтористый натрий - 5%.

Выдержка при 1040°С составляет 1 ч. Толщина боридного слоя после такой обработки на стали ЗХЗМЗФ 80 мкм.

С температуры насыщения осуществляют закалку в масло с последующим отпуском при 600° С в течение 2 ч.

Материалы, используемые при насыщении, применяют в виде порошков: окись алюминия, никель, хлористый аммоний, железо, фтористый натрий.

Железо используется для обезуглераживания, хлористый аммоний - как активатор, никель - как поставщик атомов никеля, окись алюминия - для предотвращения спекания. Смесь карбида бора, окиси хрома и фтористого натрия обеспечивает процесс борирования.

Результаты испытаний приведены в табл. 1.

Из табл. 1 следует, что обработка по предлагаемому способу позволяет повысить разгаростойкость в 3-3,5 10 раза, долговечность пресс-форм для литья под давлением латуни в среднем 2,5-3,5 раза (составы 1-3). Состав 4 недостаточно эффективен из-за повышенной прочности подслоя, вызван- 15 ной низким содержанием никеля. Состав 5 не позволяет повысить свойства изза малой толщины зоны повышенной вязкости и пластичности, в результате чего трещина распространяется за ее 20 пределы.

Пример 2. Исследования разгаростойкости и долговечности проводят на образцах и пресс-формах из стали ЗХЗМЗФ. Разгаростойкость оценивают аналогично примеру 1. В производственных условиях проходят испытания из стали ЗХЗМЗФ для литья детали "ручка" из алюминиевого сплава АЛ-32. Пресс-формы подвергают отжигу в контейнере с плавким затвором в порошковых -смесях, состав которых имеется в табл. 2, при 1000°С в течение 10 ч. После отжига проводят закалку с 1040°C и отпуск при 600°С, а затем азотирование: 520°C - 12 ч в среде диссоции- 35 рованного аммиака, нагрев до 620°С без подачи аммиака, выдержка 0,5 ч, охлаждение до 520°C и выдержка 4 ч без подачи аммиака. Толщина азотированного слоя δ = 220 мкм.

Результаты сравнительных испытаний на разгаростойкость и долговечность пресс-форм литья алюминия сплавов представлены в табл. 2.

Данные табл. 2. показывают, что обработка по предлагаемому способу (составы 1-3) повышает разгаростой-кость в 1,8-2,0 раза по сравнению с 10 известной обработкой стали ЗХЗМЗФ (состав 6). Стойкость пресс-форм для литья алюминиевых сплавов, обработанных по предлагаемому способу, в 1,8 раза выше по сравнению с известным. 15 Формула изобретения

Способ упрочнения стальных изделий, преимущественно пресс-форм для литья под давлением, включающий никелирование и закалку, о т л и ч а ю щ и й с я тем, что, с целью повышения разгаростойкости и долговечности, никелирование проводят при диффузионном насыщении в среде, содержащей следующие компоненты, мас. %:

Никель	10-15
Окись алюминия	20-35
Аммоний хлорис-	
тый	2-4
Железо	46-68

в течение времени, необходимого для получения упрочненной зоны, равной сумме глубины подслоя (s) и диффузионного слоя (б), при этом глубина подслоя рассчитывается по формуле

$$s \geq \frac{1}{2\pi} \left(\frac{K_{1c}}{G_{0,2}} \right),$$

где К_{(С} - вязкость разрушения материала; ^С_{0,2} - предел текучести стали. Таблица 1

Coc-	Компоненты порошковой смеси для отжига, мас.%				Толщина вязкого	Толщина вязкой	Разгаро- стойкость,	1
	Fe	Ni	A1203	NH ₄ C1	слоя пос- ле отжи~ га A , мкм	зоны после насыще- ния, S = A - 0, мкм, 8 = = 80 мкм	MKM (N = 8000)	тыс.шт.
1	52	10	35	3	290	210	120	9,6
2	61	15	20	4	340	260	140	12,4
3	61	12	25	2	300	220	130	10,8
4	70,5	9	19	1,5	400	320	200	8,0
5 Иэ - вест-	43,5	. 16	36	4,5	200.	120	220	7,6
ный					_	-	460	3,5

Таблица 2

Coc-	Компоненты порошковой смеси для отжига, мас.%				Толщина вязкого	Толщина вязкой зоны на-	Разгаро- стойкость,	Долго- веч- ность,
	Fe	Ni	A1 ₂ 0 ₃	NH ₄ C1	- слоя после отжига, Δ, мкм	сыщения $S = \Delta - \delta$, мкм, $\delta = 220$ мкм	(N = 8000)	тыс.шт. отливок из АЛ-32
1	52	10	35	3	440	220	230	35,4
2	61	15	20	4	480	260	250	36,2
3	61	12	25	2	450	230	240	36,4
4	, 70,5	9.	. 19	1,5	540	320	320	29,5
5	43,5	16	36	4,5	400	180	340	20,5
Na-								
вест- ный	•			• .	***	, ·	460	20,4

Составитель Н.Сункина

Редактор Н.Гунько
Техред И.Верес
Корректор Т.Малец

Заказ 5766/23
Тираж 942
Подписное
ВНИИЛИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., д. 4/5
Производственно-издательский комбинат "Патент", г.Ужгород, ул. Гагарина, 101