(51)5 B 22 F 3/18

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ ПРИ ГКНТ СССР

## ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

(21) 4180997/02

(22) 29.01.87

(46) 23.05.91. Бюл. № 19

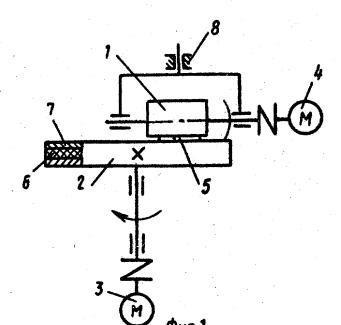
(71) Белорусский политехнический институт(72) А. В. Степаненко, В. Г. Войтов, А. В.

Зверев и А. Е. Камцев (53) 621.762.073(088.8)

(56) Авторское свидетельство СССР

№ 1138247, кл. B 22 F 3/18, 1982.

Авторское свидетельство СССР № 1139563, кл. В 22 F 1/00, 1982:


(54) СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛИ-ЧЕСКИХ ВОЛОКОН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

(57) Изобретение относится к порошковой металлургии и может быть использовано для получения волокон из порошка и гранул различных материалов. Цель — увеличить

степень вытяжки заготовок. Сущность изо-

2

бретения заключается в том, что в процессе перекатывания частиц порошка сферической формы между двумя поверхностями с одновременным закручиванием и односторонним растяжением, в зоне контакта частицы порошка с одной из деформирующих поверхностей прикладывают дополнительные растягивающие усилия циклически и с постоянной частотой. Способ осуществляется устройством, содержащим диск и валок, установленный под углом относительно радиуса диска по направлению вращения последнего; диск выполнен из эластичного материала, например полиуретана, рабочая поверхность которого плакирована тонкой металлической оболочкой, Последняя выполнена волнистой с концентричным или спиральным расположением волн. 2 с. и 4 з. п. ф−лы, 6 ил., 1 табл.



Изобретение относится к области порошковой металлургии и может быть использовано для получения волокон из порошка и гранул различных материалов.

Целью изобретения является увеличение степени вытяжки.

Предложенный способ изготовления металлических волокон заключается в перекатывании частиц порошка сферической формы между двумя деформирующими по- 10 верхностями с одновременным их закручиванием и односторонним растяжением, причем в зоне контакта частицы порошка с одной из деформирующих поверхностей прикладывают дополнительные растягива- 15 ющие усилия. При этом дополнительные усилия растяжения прикладывают циклически с постоянной частотой.

На фиг. 1 изображена кинематическая схема устройства с диском из эластичного 20 материала, плакированного плоской металлической оболочкой; на фиг. 2 - то же, с волнистой металлической оболочкой; на фиг. 3 — волны, расположенные концентрично; на фиг. 4 – волны, расположенные по 25 спирали; на фиг. 5 - очаг деформации для плоской металлической оболочки (начальная стадия деформирования); на фиг. 6 - то же, для волнистой металлической оболочки (промежуточная стадия деформирования).

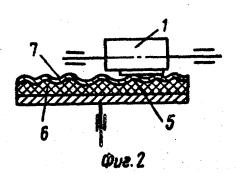
Устройство для изготовления металлических волокон состоит из двух частей: валка 1 и диска 2. Диску 2 сообщается принудительное вращение от электродвигаских частиц порошка, а валку 1 - от электродвигателя 4 в направлении, обеспечивающем встречное движение с меньшей скоростью, чем у диска 2. Валок 1 и диск 2 устанавливают друг относительно друга с 40 зазором или без в зависимости от размеров и прочностных характеристик обрабатываемых частиц 5, а также в зависимости от жесткости упругого эластичного материала 6 диска и металлической оболочки 7. Валок имеет возможность углового смещения в опоре 8. Металлическая оболочка 7 может быть выполнена плоской (фиг. 1) либо волнистой (фиг. 2). Волны А могут располагаться концентрично (фиг. 3) или по спирали 50 (фиг. 4).

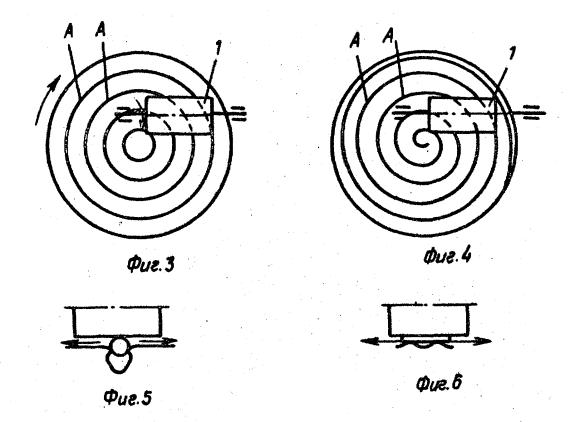
устройство работает следующим обра-30M.

Обрабатываемые частицы за счет вращения диска 2 с большей окружной скоро- 55 стью, чем у валка 1, затягиваются в зону деформации. Обрабатываемые частицы 5 получают вращательное движение за счет приложения противоположно направленных окружных скоростей валка 1 и диска 2.

Число обкатываний заготовки при перемещении через зону деформации зависит от соотношения окружных скоростей валка и диска. Из-за разности скоростей, действую-5 щих на концах формируемого волокна 5 при перекатывании, происходит сдвиг его поперечных слоев (закручивание). За счет поворота оси валка относительно радиуса диска 2 происходит возникновение дополнительных усилий, приводящих к некоторому удлинению волокна. Кроме того, из-за упругих свойств материала диска в месте контакта с заготовкой происходит неравномерное распределение напряжений по сечению заготовки (эпюра распределения напряжений показана на фиг. 5). Максимальные значения напряжений приходятся на сечение заготовки наибольшего диаметра, постепенно убывая к периферии. Таким образом, истечение металла происходит из зон максимальных напряжений в зоны минимальных напряжений, что приводит к формированию сферической формы в цилиндрическую. При наличии волнистой поверхности в зоне деформации заготовки волна распрямляется, ее гребни расходятся в противоположные стороны, а силы трения сцепления гребней с заготовкой приводят к дополнительной вытяжке последней. Для осуществления такой вытяжки необходимо, чтобы расстояние между гребнями волн, измеренное вдоль оси ролика, не превышало половины длины заготовки.

Пример. Заготовки сферической фортеля 3 в направлении обкатывания сфериче- 35 мы диаметром d=160 мкм пропускали между коническим валком диаметром D1=100 мм и  $D_1 = 120$  мм, и диском диаметром D<sub>2</sub>=400 мм. Частота вращения валка 90 об/мин, частота вращения диска 65 об/мин. Наименьший диаметр валка установлен на расстоянии 75 мм от оси диска. Зазор между валком и диском 10 мкм. Валок был повернут против часовой стрелки и установлен под углом 35° между осью валка и радиусом диска. Расстояние между гребнями волн пластины диска 250 мкм, их глубина 10 мкм. При прохождении частиц через зону деформации, образованную рабочими поверхностями диска и валка были получены за один проход волокна цилиндрической формы диаметром 50 мкм и длиной около 1000 мкм. Волокна, полученные из этого порошка на известном устройстве, имели диаметр 60 мкм и длину около 750 мкм.


По сравнению с известными, данное техническое решение позволяет увеличить удлинение за один проход на 10-15%, а следовательно, и увеличить производительность процесса за счет уменьшения числа переходов. Данные сравнительных испытаний сведены в таблицу.


- Формула изобретения
- 1. Способ изготовления металлических волокон, включающий перекатывание частиц порошка сферической формы между двумя деформирующими поверхностями с одновременным их закручиванием и односторонним растяжением, о т л и ч а ю щ и йс я тем, что, с целью увеличения степени вытяжки, в зоне контакта частицы порошка с одной из деформирующих поверхностей прикладывают дополнительные растягивающие усилия.
- 2. Способ по п. 1, о т л и ч а ю щ и й с я 15 тем, что дополнительные усилия растяжения прикладывают циклически с постоянной частотой.
- 3. Устройство для изготовления металлических волокон, содержащее диск и валок, установленный под углом относительно радиуса диска по направлению его вращения, о т л и ч а ю щ е е с я тем, что диск выполнен из эластичного материала с рабочей поверхностью, плакированной тонкой металлической оболочкой.
- 4. Устройство по п. 3, о т л и ч а ю щ е е-10 с я тем, что в качестве эластичного материала для диска используют полиуретан.
  - 5. Устройство по п. 3, о т л и ч а ю щ е ес я тем, что металлическая оболочка рабочей поверхности диска выполнена волнистой с концентрически расположенными волнами.
  - 6. Устройство по пп. 3–5, о т л и ч а ю щ е е с я тем, что волны на металлической оболочке расположены по спирали.

| Известный способ       |            | Предлагаемый способ         |            |
|------------------------|------------|-----------------------------|------------|
| Постоянное усилие      |            | Постоянное усилие           |            |
| Плоский (жесткий) диск |            | Плоский диск на полиуретане |            |
| Диаметр, мкм           | Длина, мкм | Диаметр, мкм                | Длина, мкм |
| 60                     | 750        | 50                          | · 1000     |

## Продолжение таблицы

|                    | үүдэг Предлагае | мый способ         |            |
|--------------------|-----------------|--------------------|------------|
| Постоянное усилие  |                 | Циклическое усилие |            |
| Волнообразный диск |                 | Спиралевидный диск |            |
| Диаметр, мкм       | Длина, мкм      | Диаметр, мкм       | Длина, мкм |
| 45                 | . 1400          | 35                 | 6500       |





Составитель Л.Родина Техред М.Моргентал

Корректор М.Максимишинец

Редактор Л.Гратилло Заказ 1570

Тираж 510

Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., 4/5