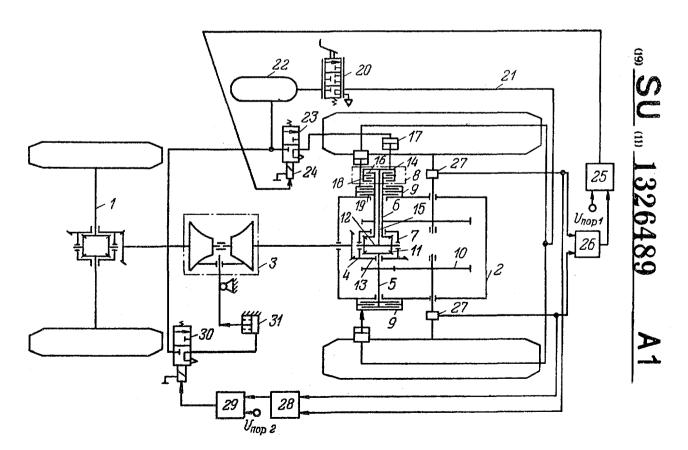


(19) SU (11) 1326489 A 1

(51) 4 B 60 K 41/26, B 60 T 8/26


ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 4061769/31-11
- (22) 29.04.86
- (46) 30.07.87. Бюл. № 28
- (71) Белорусский политехнический институт
- (72) Н.В.Богдан
- (53) 629.113-59(088.8)
- (56) Авторское свидетельство СССР
- № 1115944, кл. В 60 Т 1/06, 1983.
- (54) ТРАНСПОРТНОЕ СРЕДСТВО
- (57) Изобретение относится к транс-портному машиностроению. Цель изоб-

ретения - повышение безопасности двиз жения. В кинематической связи между передним мостом 1 и задним мостом 2 установлен вариатор 3. Силовой цилиндр 31 вариатора 3 подключен к источнику 22 давления через распределитель 30. Обмотка распределителя 30 подключена к выходу порогового элемента, на один вход которого подключен выход сумматора 28, соединенного с датчиками 27 тормозного момента. 1 ил.

Изобретение относится к транспортному машиностроению, в частности к тормозным системам транспортных средств, используемым преимущественно для автомобилей и тракторов.

Цель изобретения - повышение безопасности движения.

На чертеже приведена схема тормозной системы транспортного сред-

Тормозная система содержит передний 1 и задний 2 ведущие мосты, которые связаны между собой вариатором 3. Задний ведущий мост 2 содержит центральную передачу 4, полуоси 5 и 6, дифференциал 7 и муфту 8 блокировки дифференциала. С полуосями 5 и 6 взаимосвязаны основные тормоза 9 и бортовые передачи 10.

Дифференциал 7 содержит сателлиты 11, установленные на крестовине 12 с возможностью вращения, а также солнечные шестерни 13, выполненные за одно целое с полуосями 5 и 6.

Муфта 8 блокировки содержит корпус 14, связанный с крестовиной 12, шлицевым валом 15, проходящим в полуось 6, нажимной диск 16 с силовым цилиндром 17 управления, ведомые 18 и ведущие 19 диски, соединенные соответственно с полуосью 6 и корпусом 14 муфты 8 блокировки.

Кроме того, имеется тормозной кран 20, соединенный с основными тормозами 9 трубопроводом 21 и с источником 22 давления. Последний соединен посредством двухпозиционного электромагнитного распределителя 23 с силовым цилиндром 17, причем распределитель 23 выполнен с обмоткой 24, которая электрически связана с пороговым элементом 25, который, в свою очередь, связан с вычитающим устройством 26. Последнее имеет два входа, связанных с датчиками 27 тормозного момента. Датчики 27 тормозного момента, кроме этого, связаны с сумматором 28, вход которого через пороговый элемент 29 связан с обмоткой дополнительного распределителя 30, который соединен с силовым цилиндром 31 управления вариатором 3.

Тормозная система работает следу-ющим образом.

При движении транспортного средства по дорогам с высоким коэффициентом сцепления крутящий момент передается центральной передачей 4 через

дифференциал 7, полуоси 5 и 6 и бортовые передачи 10 на задние колеса и через вариатор 3 на колеса переднего моста 1 транспортного средства. Сателлиты 11, откатываясь по солнечным шестерням 13, позволяют вращаться колесам с разной угловой скоростью на поворотах. В этом случае, 10 если водитель не воздействует на педаль управления тормозным краном 20. последний находится в положении, при котором камеры управления основными тормозами 9 сообщены с атмосферой, 15 а питание не подается к датчикам 27 тормозных моментов колес, обмотке 24 распределителя 23 и обмотке распределителя 30 управления вариатором 3. В результате последний сообщает сило-20 вой ципиндр 17 с атмосферой.

При воздействии на педаль управления тормозным краном 20 он переводится в положение, при котором в камеры управления основными тормозами 25 9 подается сжатый воздух, вызывая возникновение тормозных моментов на задних колесах, а также на передних колесах через межосевой привод, содержащий вариатор 3. Вследствие этозо го осуществляется торможение транспортного средства.

Из-за неравномерного износа, попадания влаги на пары трения, разрегулирование тормозных механизмов и других факторов может возникать неравномерная работа тормозных механизмов. Однако контакты выключателя стопсигнала (не показаны) замыкаются и 40 электрическое питание подается к датчикам и электронному блоку. При этом датчики 27 тормозных моментов передают сигнал о величине тормозных моментов на вычитающее устройство, ко-45 торое, в свою очередь, определяет разницу в величине тормозных моментов и передает ее на элемент 25, где она сравнивается с пороговым уровнем Uпор (допустимой величиной рассогласования из условия сохранения устойчивости движения). При повышении порогового значения на обмотку 24 подается сигнал и распределитель 23 занимает позицию, при которой сиповой цилиндр 17 сообщается с источником 22 давления, т.е. муфта блокировки блокирует солнечную шестерню 12 с крестовиной 11 дифференциала. В этом случае тормозные моменты вырав-

ниваются, т.е. исключается бортовая неравномерность действия тормозных механизмов. Одновременно с датчиков 27 регистрации тормозных моментов сигналы поступают на сумматор 28, который определяет величину суммарного тормозного момента и передает ее на элемент 29, где оно сравнивается с пороговым уровнем $U_{\mathsf{пор}\,2}$, выбираемым исходя из условия дополнительной тормозной силы, развиваемой при движении транспортного средства с блокированной трансмиссией при максимально выбранном кинематическом рассогла- 15 совании колес переднего и заднего моста устанавливаемого вариатора 3. Если суммарный сигнал на выходе сумматора 28 выше $U_{\mathsf{nop}\,2}$, то на выходе элемента 29 сигнал отсутствует и рас- 20 пределитель 30 находится в первой позиции, соединяя силовой цилиндр 31 управления вариатором 3 с атмосферой. Кинематическое несоответствие между мостами отсутствует.

В случае выхода из строя тормозных механизмов или пневмопривода тормовов сигнал от датчиков 27 отсутствует (или незначителен). На выходе сумматора 28 сигнал становится меньше U_{пора}, вследствие чего на выходе элемента 29 формируется сигнал. Распределитель 30 занимает вторую позицию, соединяя силовой цилиндр 31 управления вариатором 3 с источником 22. В этом случае изменяется передаточное число вариатора 3, вследствие чего возникает рассогласование вращения колес, приводящее к возникновению до- 40 полнительной тормозной силы. Таким

образом, при выходе из строя тормозной системы торможение осуществляется счет кинематического рассогласования вращения колес блокированной трансмиссии, что существенно повышает безопасность эксплуатации транспортного средства.

10 Формула изобретения

Транспортное средство, содержащее кинематически связанные между собой передний и задний ведущие мосты, установленные на заднем мосту тормоза, и дифференциал с муфтой блокировки, силовой цилиндр которой подключен к источнику давления через двухпозиционный электромагнитный распределитель, обмотка которого подключена к выходу порогового элемента, вход которого связан с выходом вычитающего устройства, соединенного входами с датчиками тормозных моментов на коле-25 сах заднего моста, отличающееся тем, что, с целью повышения безопасности движения, оно снабжено вариатором с цилиндром управления, включенным в кинематическую связь между мостами, дополнительным двухпозиционным распределителем для сообщения полости указанного цилиндра с источником давления и атмосферой и дополнительным пороговым эле-35 ментом и сумматором, входы которого подключены к датчикам тормозных моментов, а выход к входу дополнительного порогового элемента, соединенного выходом с обмоткой дополнительного электромагнитного распредели-

Составитель С. Макаров Техред Н.Глущенко Корректор М.Пожо

Редактор М. Циткина

Тираж 598

Подписное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д.4/5

Производственно-полиграфическое предприятие,г.Ужгород,ул.Проектная,4

Заказ 3236/15