(51) 4 _ C 03 C 3/093

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 4082943/31-33
- (22) 11.05.86
- (46) 07.12.87. Бюл. № 45
- (71) Белорусский политехнический институт
- (72) О.Г. Городецкая, А.П. Шкадаре--вич, Н.Н. Ермоленко, Л.Е. Золотаре-ва, Л.В. Рабыкина и Т.И. Соболев--ская
- (53) 666.112.6 (088.8)
- (56) Авторское свидетельство СССР № 923976, кл. С 03 С 3/066, 1980. Авторское свидетельство СССР № 885164, кл. С 03 С 3/066, 1979.

(54) СТЕКПО

(57) Изобретение относится к составам силикатных стекол и может быть использовано в приборостроении, квантовой электронике, в частности, в качестве светотрансформатора. коллектора солнечной энергии, активной среды. С целью снижения кристаллизационной способности и увеличения квантового выхода люминесценции стекло содержит, мас.%: 48,7-53,7; Al₂O₃ 3,5-10,6; B₄O₃ 14,1-20,5; Bi₂0₃ 0,005-0,5; Ca0 2,5-8,8; ZnO 0,2-5,4; MgO 4,5-7,8; Na₂O 2,5-8,3; K₂O 0,3-2,9; SnO 0,1-1,0. Квантовый выход люминесценции 18-20%, температура варки 1500° С КЛТР $\sqrt{10^{-7}}$ град $\sqrt{10^{-1}}$ (59-62).2 табл.

10

20

Изобретение относится к составам силикатных стекол и может быть использовано в приборостроении, кванто вой электронике, в частности, в качестве светотрансформатора, коллектора солнечной энергии, активной среды.

Цель изобретения - снижение кристаллизационной способности и увеличение квантового выхода люминесцении.

Составы стекол приведена в табл. 1.

Свойства стекла приведены в табл. 2.

Введение ZnO обеспечивает получение ионов висмута в заданной валентности, т.е. ионов Bi^{3+} благодаря способности SnO (при высокой температуре синтеза стекол) присоединения атомарного кислорода (по схеме $\mathrm{SnO}+\mathrm{O} \to \mathrm{SnO}_2$), предотвращающей перевод ионов Bi^{3+} до высших степеней окисления.

Стекла, содержащие ионы Ві³⁺, бесцветны, не имеют полос поглощения в видимой области спектра, окисление ионов висмута вызывают окраску стекол в желто-коричневые тона. Интенсивность окраски определяется концентрацией введенного активатора (оксида висмута) и окислительновосстановительными условиями синтеза стекол.

Синтез стекол осуществляют в газопламенной печи периодического действия в восстановительной атмосфере.

Отжиг стекол осуществляют в муфельной электрической печи при температуре на $40-50^{\circ}$ С ниже их температуры начала размягчения.

Использование указанных стекол позволяет повысить квантовый выход люминесценции стекол, что обеспечивает повышение КПД оптико-электронных приборов, кроме того, повышение технологичности процесса варки обеспечивает уменьшение процента брака.

Формула изобретения

Стекло, включающее SiO_2 , Al_2O_3 , B_2O_3 , Bi_2O_3 , CaO_3 , CaO_4 , CaO_5 , CaO_5 , CaO_5 , CaO_5 , CaO_6 , CaO_7 , CaO

		,
	SiO_2	48,7-53,7
30	Al_2O_3	3,5-10,6
	B_2O_3	14,1-20,5
	Bi ₂ O ₃	0,005-0,5
	Ca0	2,5-8,8
	ZnO	0,2-5,4
35	MgO	4,5-7,8
ວຸນ	Na_2O	2,5-8,3
	K_2O	0,3-2,9
	SnO	0,1-1,0

Таблица 1

Coc-	Содержание, мас.%, в составе									
тав	SiO ₂	A1 ₂ 0 ₃	B ₂ O ₃	Bi ₂ O ₃	MgO	CaO	ZnO	Na ₂ O	K 20	Sn0
Ī	48,7	8,5	14,1	0,005	5,5	8,8	5,4	5,095	2,9	1,0
2	53,7	3,5	20,5	0,4	4,5	8,0	4,0	2,50	2,8	0,1
3	52,5	10,6	16,8	0,5	7,8	2,5	0,2	8,3	0,3	0,5

3

		Таб	лица 2			
Свойства стекла	Показатели состава стекла					
	1	2.	3			
Температура варки, °С	1500±20	1500±20	1500±20			
Температура начала размягчения, °C	610	590	590			
ТКЛР α'·10 ⁻⁷ , град⁻¹	62	60	59			
Химическая устойчивость к воде по ГОСТу Микротвердость, МПа	II гидр. класс 6390		II гидр. класс 6380			
Температура верхнего предела кристаллизации, °C	-	ллизуются котюуении. 18	20			

Составитель Г. Каменских Редактор Н. Бобкова Техред М.Моргентал Корректор В. Бутяга

Заказ 5939/21

Тираж 428

Подписное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5