

The estimation of economic efficiency of lining replace in hardening-tempering aggregate STZA-5.40.5,7-15L-B1 of OAO «Minsk automobile plant» is carried out in the present article.

И. А. ТРУСОВА, БНТУ, А. И. МИХЛЮК, ОАО «МАЗ», Д. В. МЕНДЕЛЕВ, П. Э. РАТНИКОВ, БНТУ

УДК 669.04

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РАБОТЫ ТЕРМИЧЕСКИХ ПЕЧЕЙ СОПРОТИВЛЕНИЯ В УСЛОВИЯХ ОАО «МАЗ»

Как было отмечено в работах [1–3], одним из путей повышения эффективности тепловой работы нагревательных и термических печей является замена футеровки, при этом в зависимости от технологического назначения печи, вида футеровки, режима работы снижение потерь теплоты через ограждения печи и на аккумуляцию теплоты кладкой позволяет повысить КПД печи на 6–8% и сэкономить 25–40% и более топлива.

В настоящей работе выполнена оценка экономической эффективности замены футеровки в закалочно-отпускном агрегате СТЗА-5.40.5/7-15Л-Б1 ОАО «МАЗ». В табл. 1 приведены его характеристики.

На рис. 1 показана схема футеровки закалочной печи СТЗ 5.40.5/10 и отпускной печи СТЗ 5.60.5/7. Замена футеровки состояла в обновлении

Таблица 1. Технические характеристики закалочно-отпускного агрегата СТЗА-5.40.5/7-15Л-Б1

Данные для расчета		Закалочная печь СТЗ 5.40.5/10	Отпускная печь СТЗ 5.60.5/7
Максимальная температура, °С		950	700
Рабочая температура, °С		870–880	600–630
Размеры рабочего пространства, мм		500×4000×500	500×6000×500
Установленная мощность, кВт		250,2	207
Режим работы агрегата		7280 ч/год (скользящий график), темп толкания 20 мин	
Температура на внешней поверхности, °С	до замены	105±5	85±
	после замены	75±5	60±5

изношенных слоев путем замены каждого слоя на новый идентичный слой.

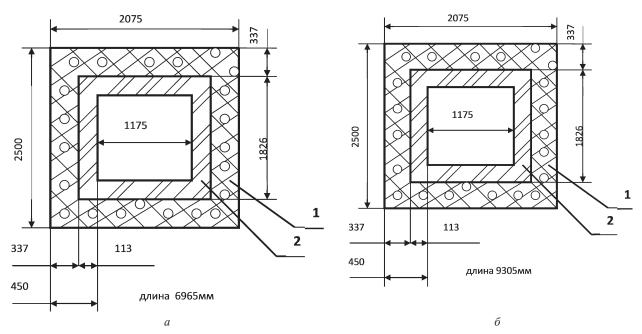
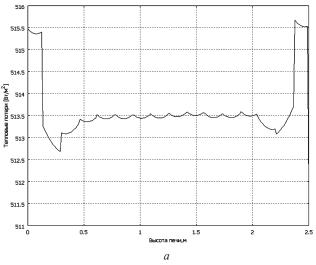



Рис. 1. Схема футеровки закалочной печи СТЗ 5.40.5/10: a — закалочная печь; δ — отпускная печь; l — керамоперлит-350; 2 — кирпич ВГЛДС-0,8

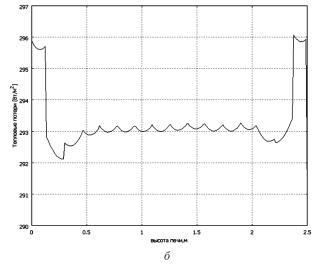
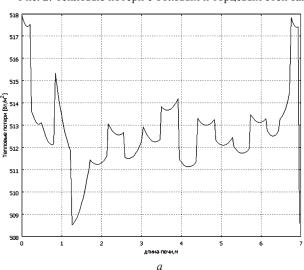



Рис. 2. Тепловые потери с боковых и торцевых стен закалочной печи: a – до реконструкции; δ – после реконструкции

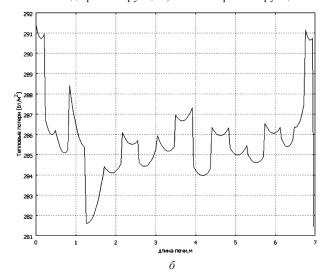


Рис. 3. Тепловые потери с верхней стенки закалочной печи: a – до реконструкции; δ – после реконструкции

С целью оценки экономии топлива при замене футеровки выполнены расчеты по методике, приведенной в работе [4].

На рис. 2–7 приведены плотности тепловых потоков с внешней поверхности агрегата до и после замены футеровки.

На основании выполненных расчетов осуществлена оценка экономической эффективности проведенной замены футеровки.

Закалочная печь

Снижение потерь теплоты с боковых и торцевых стен печи за счет уменьшения теплового потока:

$$\Delta Q_{\text{бок}} = (513-286) \cdot (2,075 \cdot 6,965 \cdot 2 + 6,965 \cdot 2,5 \cdot 2) = 9966.6 \text{ BT}$$
 (1)

где 513 и 286 $Bт/м^2$ – потери теплоты до и после реконструкции (см. рис. 2), 2,075 и 2,5 м – высота боковых и торцевых стен печи, 6,965 м – длина печи (см. рис. 1).

Снижение расхода теплоты с верхней стенки печи:

$$\Delta Q_{\text{Bepx}} = (513-286) \cdot 2,075 \cdot 6,965 = 3280,7 \text{ Bt.}$$
 (2)

Снижение расхода теплоты с нижней стенки печи:

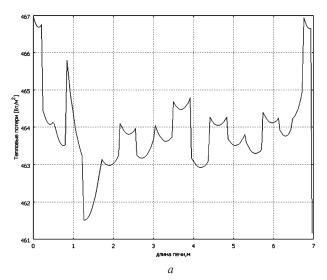
$$\Delta Q_{\text{HUWH}} = (464 - 275) \cdot 2,075 \cdot 6,965 = 2731,5 \text{ Bt. } (3)$$

Суммарная экономия электроэнергии в год:

$$\Delta Q = (9966, 6 + 3280, 7 + 2731, 5) \cdot 7280 =$$

$$116325, 664 \text{ kBt-y}$$
(4)

Суммарная экономия электроэнергии в год в денежном выражении:


$$P = 116325,664.410 = 47693522 \text{ py6.}$$
 (5)

где 410 – стоимость 1 кВт⋅ч, руб.

Аналогичным образом выполнены расчеты для отпускной печи.

Отпускная печь

Снижение расхода теплоты с боковых и торцевых стен печи:

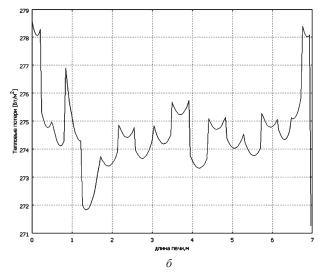
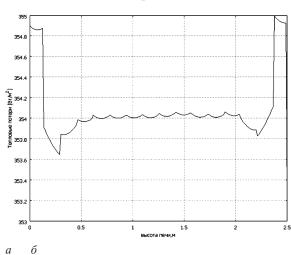



Рис. 4. Тепловые потери с нижней стенки закалочной печи: a – до реконструкции; б – после реконструкции

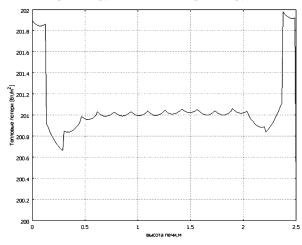
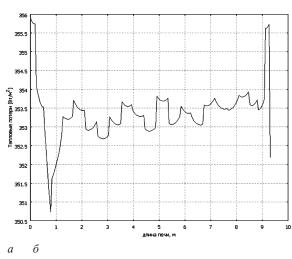



Рис. 5. Тепловые потери с боковых и торцевых стен отпускной печи: a – до реконструкции; δ – после реконструкции

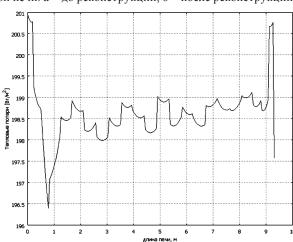
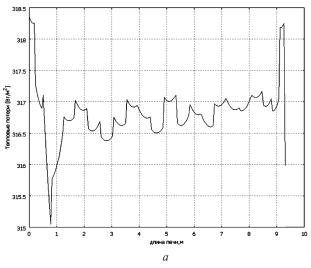


Рис. 6. Тепловые потери с верхней стенки отпускной печи: a – до реконструкции; δ – после реконструкции

$$\Delta Q_{\text{бок}} = (354 - 201) \cdot (2,075 \cdot 9,305 \cdot 2 + 9,305 \cdot 2,5 \cdot 2) = 13026,54 \text{ Bt.}$$
 (6)

Снижение расхода теплоты с нижней стенки печи:


Снижение расхода теплоты с верхней стенки печи:

$$\Delta Q_{\text{нижн}} = (317 - 187,5) \cdot 2,075 \cdot 9,305 = 2500,37 \text{ Bt.}$$
 (8)

$$\Delta Q_{\text{Bepx}} = (353.5 - 198.5) \cdot 2.075 \cdot 9.305 = 2992.72 \text{ Bt. } (7)$$

Суммарная экономия электроэнергии в год:

166/AUTUG U MGTAASAFUA

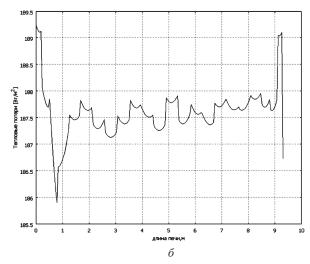


Рис. 7. Тепловые потери с нижней стенки отпускной печи: a – до реконструкции; δ – после реконструкции

$$\Delta Q = (13026,54 + 2992,72 + 2500,37) \cdot 7280 =$$

$$134822,91 \text{ kBt·y}$$
(9)

Суммарная экономия электроэнергии в год в денежном выражении:

$$P = 134822,91.410 = 55277392 \text{ py6.}$$
 (10)

Выводы

Выполнена экономическая оценка замены футеровки на примере печи ОАО «МАЗ». Экономический эффект в год от замены футеровки на закалочно-отпускном агрегате СТЗА-5.40.5/7-15Л-Б1 ОАО МАЗ составляет порядка 103 млн. бел. руб. в ценах на электроэнергию в марте 2011 г.

Литература

- 1. Т и м о ш п о л ь с к и й В. И., Г е р м а н М. Л. Концепция реконструкции и модернизации парка нагревательных печей металлургических и машиностроительных предприятий Республики Беларусь: от теории к практике (проблемные вопросы) // Литье и металлургия. 2007. № 2. Ч.21–28.
- 2. Тимошпольский В.И., Герман М.Л., Менделев Д.В. Обзор основных направлений модернизации печного парка и совершенствование технологий нагрева и термической обработки слитков и заготовок в условиях современного машиностроительного предприятия // Литье и металлургия. 2007. № 4. С. 54–62.
- 3. Расчет и конструирование современных газопламенных установок для нагрева и термообработки / Тимошпольский В. И., Несенчук А. П., Трусова И. А. и др.// Изв. вузов и энерг. объед. СНГ. Энергетика. 2008. № 4. С. 34–43.
- 4. Теплотехническое обоснование выбора энергоэффективной футеровки нагревательных и термических печей машиностроительных предприятий / Тимошпольский В. И., Трусова И. А., Менделев Д. В. и др. // Изв. вузов и энерг. объед. СНГ. Энергетика. 2000. № 4. С. 48–55.