СРАВНЕНИЕ РЕЗУЛЬТАТОВ РАСЧЁТОВ ОБРАТНОЙ УГЛОВОЙ ЗАСЕЧКИ РАЗЛИЧНЫМИ МЕТОДАМИ

Сергачёв Александр Александрович, студент 3-го курса кафедры «Геодезия и аэрокосмические геотехнологии» БНТУ (Научный руководитель — Будо А.Ю., старший преподаватель)

Задача исследовательской работы: Сравнить результаты расчётов обратной угловой засечки методом наименьших квадратов, методом Деламбра и методом, реализованным в программном обеспечении тахеометра Trimble M3.

Обратной угловой засечкой называется определение положения пункта путем измерения углов или направлений на определяемом пункте не менее чем на три пункта, координаты которых известны. В том случае, когда исходных пунктов всего лишь три, обратная угловая засечка называется однократной. В том случае, когда исходных пунктов более трех — обратная угловая засечка называется многократной.

Для упрощения работы расчёт будет выполнен в различных программах. Т.е. каждый метод будет выполнен в той программе, в которой он реализован.

Метод наименьших квадратов – математический метод, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Реализован в программе Credo Dat 3.

Метод Деламбра. Сущность способа заключается в приведении решения обратной засечки по формуле Деламбра к решению прямой засечки по формулам Гаусса. Для реализации этого метода была для этой работы была написан программа RAI.

RAI (Reverse angle intersection) — это программа, предназначенная для вычисления координат точки способом обратной угловой засечки. Она состоит двух окон. Первое — для ввода исходных данных, второе — для вывода результатов расчёта. Первое окно содержит поле, для ввода количества исходных пунктов и таблицу для ввода координат и углов. Второе окно выводит уравненные координаты искомого пункта, СКО дирекционного угла, координат и положения пункта.

Третий метод — это метод, который реализован в программном обеспечении тахеометра Trimble M3. Для упрощения восприятия и понимания сути работы, условно назовём его метод X.

Ход работы

В программе AutoCad в условной системе координат запроектированы 8 исходных пунктов и 10 станций (Рис.1). В качестве исходных данный взяты координаты исходных пунктов. Для того, чтобы иметь возможность оценить точность вычисленных координат станций, взяты их истинные координаты.

Рисунок 1 – Схема расположения станций и исходных пунктов

Таблица 1 – Координаты станций и исходных пунктов

$N_{\underline{0}}$	X	Y	$\mathcal{N}_{\underline{0}}$	X	Y
станции		-	пункта		_
CT01	32851,011	38365,395	M1	33206,876	37432,453
CT02	32584,601	38459,624	M2	33511,136	38953,750
CT03	32932,974	39400,275	M3	31964,484	37736,713
CT04	31928,320	38767,300	M4	31964,484	39790,464
CT05	31081,456	39204,130	M5	30247,560	38259,881
CT06	30813,603	38631,701	M6	30696,736	39993,303
CT07	31355,965	39815,819	M7	33049,317	41053,811
CT08	31939,129	40449,693	M8	31783,833	41564,761
CT09	32395,518	40880,727			
CT10	32599,735	39893,063			

В качестве смоделированных измерений от каждой станции до пунктов, на которые с неё засекались, вычислены расстояния и углы, взятые от первого направления. Во все измерения внесены сгенерированные случайные ошибки.

Таблица 2 – Измерения со станций

№ станции	Направл.	Гор. пролож. S, м	Исти	нные βср	углы		№ станции	Направл.	Гор. пролож. S, м	Исти	нные βср	углы
	M2	884,264	0°	00′	00′′			M4	1633,165	0°	00′	00′′
T C.1.01	M4	1678,316	80°	10′	36′′	СТ06	M6	1366,619	49°	42′	37′′	
	M3	1086,821	173°	37′	59′′		M5	677,237	168°	06′	19′′	
	M1	998,517	249°	10′	13′′			M3	1457,91	276°	56′	08′′
	M2	1050,057	0°	00′	00′′			M8	1800,518	0°	00′	00′′
CT02	M4	1468,214	86°	54′	51''		CT07	M6	682,704	88°	40′	46′′
C102	M3	952,448	201°	18′	26′′		C107	M3	2166,326	210°	03′	45′′
	M1	1200,954	273°	08′	13′′			M4	609,045	281°	21′	43′′
	M7	1657,619	0°	00′	00′′			M7	1263,906	0°	00′	00′′
	M4	1044,141	72°	04′	52′′	CT08	M8	1125,824	69°	22′	33′′	
CT03	M3	1924,947	153°	49′	04′′		M6	1323,574	171°	37′	03′′	
	M1	1986,789	191°	57′	00′′		M4	659,721	243°	39′	00′′	
	M2	730,515	236°	20′	44′′			M7	676,321	0°	00′	00′′
	M2	1593,763	0°	00′	00′′			M8	917,631	116°	58′	34′′
	M4	1023,793	81°	15′	29′′		CT09	M6	1916,6	192°	45′	14′′
CT04	M6	1737,773	128°	24′	49′′			M4	1172,366	233°	36′	08′′
	M5	1755,676	190°	04′	55′′		M2	2226,630	285°	14′	32′′	
	M3	1031,222	265°	17′	34′′			M7	1244,781	0°	00′	00′′
CT05	M4	1059,972	0°	00′	00′′			M8	1860,187	47°	11′	18′′
	M6	877,948	82°	24′	21''		CT10	M4	643,484	120°	20′	55′′
CT05	M5	1259,761	194°	58′	01''	-		M1	2534,406	215°	02′	04′′
	M3	1712,62	267°	27′	16''			M2	1308,802	245°	18′	33′′

RAI. Введем поочерёдно измерения на каждой станции. Выпишем рассчитанные координаты в отдельную таблицу и найдем их отклонения от истинных значений. Среднее отклонение составило 11 мм.

Таблица 3 – Результаты вычислений RAI

№ станции	X	у	X-x	Y-y
C1	32851,004	38365,401	0,007	0,006
C2	32584,610	38459,650	0,009	0,026
C3	32932,966	39400,276	0,008	0,001
C4	31928,316	38767,325	0,004	0,025
C5	31081,457	39204,139	0,001	0,009
C6	30813,580	38631,694	0,023	0,007
C7	31355,935	39815,823	0,030	0,004
C8	31939,126	40449,696	0,003	0,004
C9	32395,499	40880,729	0,019	0,002
C10	32599,719	39893,070	0,016	0,007
		$\sum =$	0,0)11

Trimble M3. Создадим новый проект, в который сразу запишем координаты исходных пунктов. По имеющимся измерениям (расстояния и углы) выполним 10 обратных засечек и выпишем координаты станций в таблицу. Сразу же найдём их отклонения от истинного значения. Среднее отклонение составило 0,004 м.

Таблица 4 – Результаты вычислений ПО Trimble M3

№ станции	X	у	X-x	Y-y
C1	32851,010	38365,401	0,001	0,006
C2	32584,605	38459,628	0,004	0,004
C3	32932,978	39400,275	0,004	0,001
C4	31928,314	38767,306	0,006	0,006
C5	31081,451	39204,134	0,005	0,004
C6	30813,607	38631,694	0,004	0,007
C7	31355,966	39815,819	0,001	0,000
C8	31939,132	40449,699	0,003	0,007
C9	32395,512	40880,728	0,006	0,001
C10	32599,734	39893,060	0,001	0,003
		$\sum =$	0,00	04

Как мы можем заметить, для расчёта методом Деламбра нужны только значения координаты исходных пунктов и измеренные углы, а для метода X к этому добавляются ещё и расстояния. Поэтому второй метод показал меньшие отклонения от истинных значений, а значит и более высокую точность определения координат.

Теперь выполним уравнивания в программе Credo Dat в двух вариантах: без учёта расстояний и с их учётом.

Credo Dat. Сначала внесём исходные данные без учёта расстояний. Найдём отклонения координат от их истинного значения. Среднее отклонение составило 0,009 м.

Таблица 5 – Результаты вычислений Credo Dat 3, без учёта расстояний

№ станции	X	у	X-x	Y-y
C1	32851,006	38365,398	0,005	0,003
C2	32584,610	38459,650	0,009	0,026
C3	32932,966	39400,276	0,008	0,001
C4	31928,316	38767,322	0,004	0,022
C5	31081,459	39204,133	0,003	0,003
C6	30813,583	38631,691	0,020	0,010
C7	31355,938	39815,823	0,027	0,004
C8	31939,127	40449,692	0,002	0,000
С9	32395,500	40880,727	0,018	0,000
C10	32599,719	39893,070	0,016	0,007
		$\sum =$	0,0	009

Теперь внесём исходные данные с учётом расстояний. Так же найдём отклонения координат от их истинного значения. Среднее отклонение составило 0,004 м.

Таблица 6 – Результаты вычислений Credo Dat 3, с учётом расстояний

,		, ,		
№ станции	X	у	X-x	Y-y
C1	32851,008	38365,400	0,003	0,005
C2	32584,605	38459,637	0,004	0,013
C3	32932,973	39400,274	0,001	0,001
C4	31928,315	38767,310	0,005	0,010
C5	31081,456	39204,133	0,000	0,003
C6	30813,598	38631,697	0,005	0,004
C7	31355,960	39815,819	0,005	0,000
C8	31939,129	40449,697	0,000	0,005
C9	32395,506	40880,728	0,012	0,001
C10	32599,727	39893,064	0,008	0,001
		$\sum =$	0,0	004
		$\sum =$	0,0	004

Таблица 7 – Итоги расчётов

Метод	Программа	Исходные данные	Ср. отклонение
Метод Деламбра	RAI	Углы	0,011
Метод Х	ПО Trimble M3	Углы и расстояния	0,004
МНК	Credo Dat 3	Углы	0,009
IVITIK	Ciedo Dat 3	Углы и расстояния	0,004

Из всего вышеизложенного можно сделать несколько выводов:

- Методы, в которых используются в качестве исходных данных кроме углов ещё и расстояния, дают меньшие значения отклонений, а значит, являются более точными.
- Из трех представленных методов расчёта обратной угловой засечки, менее точным является метод Деламбра, который реализован в программе RAI.