ПРИМЕНЕНИЕ СОВРЕМЕННЫХ МАТЕРИАЛОВ ПРИ СТРОИТЕЛЬСТВЕ МОСТОВЫХ СООРУЖЕНИИ

Манасарьян Кирилл Сергеевич, студент 3-го курса специалитета кафедры «Автомобильных дорог, мостов и тоннелей» Санкт-Петербургский государственный архитектурно-строительный университет, г. Санкт-Петербург (Научный руководитель — Корныльев Е.Н., канд. техн. наук, доцент)

Для мостового строительства в последние десятилетия наблюдается общемировая тенденция к замещению традиционных материалов новыми, обусловленная, как правило, тремя группами причин:

Функциональными — изменение нормативных требований к физикомеханическим свойствам конструкций мостовых сооружений ввиду увеличения транспортных потоков, тоннажа грузоперевозок, осевых нагрузок.

Рекреационными – связаны с неэффективностью традиционных методов защиты современных и реставрации изношенных конструкций;

Ресурсными – истощаемость запасов природных ресурсов, и возросший на фоне глобальных экологических проблем интерес к эко-материалам;

Возросший интерес у инженеров-исследователей вызывают материалы на основе высокомолекулярных органических или комплексных неорганических соединений, к которым, в частности, относятся пластики на волокнистых полимерах, фибробетон и стекло.

Пластики на волокнистых полимерах. Композитные материалы составлены из нитяной матрицы, выполняющую армирующую роль и заключенную в эпоксидную или каучуковую оболочку, придающую связность и жёсткость основе. Сферами применения волокнистых пластполимеров являлись авиа-, судо-, автомобилестроение, а с начала 90-х годов прошлого столетия началось их внедрение в мировую практику производства частично- и цельнокомпозитных мостовых сооружений и конструкций.

Согласно источникам к 2019 г. в мире насчитывалось 355 композитных мостовых сооружений, в том числе малых и пешеходных мостов, надземных переходов: например, в России только 20 конструкций к общему числу в 72500, что составляет не более 0.03%, когда как в Соединённых Штатах Америки -252 к 617000 (0,15%) [1].

Сырьевую основу для волокнистых полимеров составляют: стеклопластики (расплавленные при температурах 1000-1800 С° карбонатные

или силикатные породы, [2]), углепластик (модификации углеродистых кевлар (полиамидные цепочки), базальтовое (стекловолокно на основе базальтовых пород, [3]). Технологии формования волокнистых пластмасс также обширны: ручные по типу распыления (spray-up) жидкой формовке (lay-up) В специальных опалубках, И также автоматизированные, как вакуумная инфузия («вытяжка» по типу веретена) и пултрузия (склеивание и профилирование на едином станке)

Фибробетон. Полимерный тип бетона, в состав которого введена равномерно распределённая стружка (фибра) из стальных, полимерных (пенополистирол, пропилен) и натуральных (базальт, целлюлоза, растительные волокна) материалов. Основные функции такого заполнителя — армирование конструкций на молекулярном уровне и придание специальных свойств.

Классифицируют фибробетон на обычный (международное наименование – FRPC) и сверхвысокопрочный (UHPFRC), основными отличиями между которыми является количество вводимой фибры, – до 1% и до 3% от общей массы соответсвтенно, – и степень упроченения и адгезии микроарматуры с телом бетона. [4]

Технология введения волокон для укрепления стройматериалов по историческим данным известна с Вавилонской эпохи, когда в тела кирпичных блоков добавляли конский волос или овощные волокна. Но масштабно фибробетон применяли лишь с 60-х годов прошлого столетия. Точное количество фибробетонных мостовых сооружений в мире неоднозначно: считается, что в среднем из 5500-5600 бетонных мостовых сооружений для тридцати в большей или меньшей степени применён фибробетон ($\approx 0,55\%$)

Стекло. Из считающегося непригодным для мостостроения стекла, на самом деле, возможно изготовить плиты пролётных строений и даже малые фермы, о чём свидетельствуют европейские научные разработки и китайские строительные достижения в возведении стеклянных мостовых сооружений, по независимым оценкам общее число которых достигает 2300. [5] Самыми известными являются висячие мосты Чжанцзяцзё с пролётом в 430 м и возвышающийся над землёй более чем на 250 м и Пиньянь, открытый в 2015 г. и ставший первым большим мостовым сооружением, пролётное строение которого было выполнено из стекла (Рис 1.)

Рисунок 1 – Мост Пиньянь, Китай (Фото: ABC News [Электронный ресурс]. – Режим доступа: www.abc.net.au. Дата доступа: 19.11.2020)

Оценка достоинств и недостатков вышеприведённых материалов для мостостроения приведена в (Табл. 1)

Таблица 1 – Оценка свойств инновационных материалов

Материал	Преимущества	Недостатки
Стекло-	1. Большие показатели коррозионной	1. Слабая устойчивость к ударным
волокно	стойкости, чем у традиционных ЖБ	нагрузкам
	конструкций	2. Небольшая перекрывающая
	2. Снижение затрат на обслуживание	способность
	3. Лёгкий вес	3. Ограниченность в применения
		стандартных методов испытания
Фибро-	1. Большая пластичность при	1. Высокая зависимость стоимости
бетон	растяжении, чем у обычных бетонов	работ от технолгического оснащения
	2. Удобство обращения с бетонной	организации-исполнителя работ
	смесью	2. Показатели прочности на сжатие не
	3. Высокая перекрывающая	выше, чем у обычных бетонов
	способность	3. Ограниченная возможность
	4. Ускорение производства работ по	применения полезных добавок в
	армированию	бетонную смесь
Стекло	1. Абсолютные антикоррозионные	1 . Большая стоимость материала и
	показатели.	процедур производства, обращения
	2. Существенные прочностные	2. Высочайшая хрупкость
	показатели на сжатие при должной	3. Анизотропия материала,
	обработке материала	повышающая риски растрескивания
	3. Внешняя привлекательность	

Несмотря на положительные свойства вышеописанных материалов, существуют с их массовым внедрением в строительную практику. К таковым относятся: дороговизна исследовательских работ, отсутствие структурированной нормативной документации, необходимость налаживания производственных процессов. Однако, результативность реализованных проектов свидетельствует о движении инженерной мысли в сторону большего

использования в мостостроении передовых разработок из области материаловедения.

Литература:

- 1. Frederick T. Glass Fibers / Frederick T., Wallenberger, James C. Watson, Hong Li. // ASM Handbook: Vol.21.– US: ASM International, 2001.– P 29-31
- Robert Sonnenschein. FRP Composites and their Using in the Construction of Bridges / Robert Sonnenschein, Ivan Holly, Katarina Gajdosova // State University of Technology , Bratislava, Slovakia.— Czhec Republic: WMCAUS, 2016 Mode of access: https://www.researchgate.net/publication/309268786_FRP_Composites_and_their_Using_in the Construction of Bridges.— Date of access: 08.05.2020.
- 3. Why are there so few bridges in Russia? [Электронный ресурс] Режим доступа: https://www.rbth.com/business/2016/05/31/why-are-there-so-few-bridges-in-russia 598937.— Дата доступа: 19.11.2020
- 4. Ойген Брювилер. Улучшение прочностных и эксплуатационных характеристик мостовых конструкций с использованием сверхвысокопрочного фибробетона // Журнал «Дорожная держава». СПб: Отраслевая медиа-корпорация «Держава», 2020. №95, 2020 С. 53-54, 59;
- 5. Top 10 Glass Bridges in China [Electronic resource].— Mode of access https://www.travelsr.com/china/glass-bridges.php.— Date of access: 19.11.2020.