ширения в интервале температур образца α, К<sup>-1</sup> производится по формуле:

$$\alpha = \frac{nk}{(t_2 - t_1) \cdot L} + \alpha_{KB} \qquad (1).$$

где n – показание индикатора, дел; k – цена деления индикатора, мм; (t<sub>2</sub>–t<sub>1</sub>) – разность температур (комнатной и конечной) для выбранного интервала при расчёте, °С; L – длина образца, мм;  $\alpha_{\rm kB}$  – поправка на расширение кварцевого стекла, K<sup>-1</sup>.

Показания прибора фиксировались индикатором часового типа с ценой деления 1 мкм.

Для керамических материалов, на которые наносятся покрытия с последующей термической обработкой, большое значение имеет показатель термического расширения, а именно ТКЛР, так как при несовпадении его значений для материала и покрытия могут наблюдаться нежелательные явления: отскок, коробление, нарушение целостности покрытия.

Графическая зависимость линейного расширения опытных образцов серии N от температуры обжига представлена на рисунке 4.

Данные, приведенные на рисунке 4, свидетельствуют о том, что линейное расширение полученных образцов имеет линейную зависимость от температуры в измеряемом интервале, следовательно термический коэффициент линейного расширения, равный тангенсу угла наклона к оси температур, постоянный и изменяется в интервале, а для серии N (9,013-9,739)·10<sup>-6</sup> К<sup>-1</sup>.



Рисунок 4 – Графическая зависимость линейного расширения опытных образцов серии N от температуры обжига

Такая зависимость указывает на отсутствие полиморфных превращений, связанных с изменением объема и равномерность возникающих напряжений, а значит не приводит к нарушению целостности материала и его деформации, что является благоприятным для технической керамики и позволяет использовать ее в относительно широком интервале температур.

По результатам исследований установлено влияние модификатора на процесс спекания, а также на тепловые свойства синтезированных образцов.

УДК 539.2:669.(6-8)

## ФАЗОВЫЙ СОСТАВ, ТЕКСТУРА И МИКРОТВЕРДОСТЬ БЫСТРОЗАТВЕРДЕВШИХ ФОЛЬГ СПЛАВА Ві20Іп28Sn52 Шепелевич В.Г.<sup>1</sup>, Гусакова С.В.<sup>1</sup>, Гусакова О.В.<sup>2</sup>

<sup>1</sup>Белорусский государственный университет Минск, Республика Беларусь <sup>2</sup>Международный государственный экологический институт имени А.Д. Сахарова БГУ Минск, Республика Беларусь,

Тройные сплавы системы Bi-In-Sn находят применение в качестве припоев в стоматологии. Они также рассматриваются как заменители многочисленных тройных сплавов Bi-Sn-Pb, содержащих свинец, являющийся опасным компонентом для здоровья человека и состояния окружающей среды. В связи с высокой стоимостью индия для получения сплав системы Bi-In-Sn целесообразно использовать ресурсо- и энергосберегающие технологии, к которым относится охлаждение расплавов со сверхвысокими скоростями [1]. Однако структура и свойства сплавов, полученных высокоскоростным охлаждением расплава, значительно отличаются от структуры и свойств сплавов, изготовленных при малых и средних скоростях охлаждения [2, 3]. В связи с этим исследовано влияние сверхвысоких скоростей охлаждения расплава на фазовый состав, зеренную структуру и механические свойства тройного сплава Bi-In-Sn.

Сплав Bi20In28Sn52 изготовлен сплавлением компонентов в кварцевой ампуле (индексы у символов химических элементов указывают их содержание в атомных процентах, массовые концентрации соответствующих компонентов равны 31, 29 и 45 мас. %). Расплав заливался в графитовую изложницу, в которой охлаждался со скоростью 10<sup>2</sup> К/с. Затем кусочек сплава массой ≈0,2 г расплавлялся и капля распва инжектировалась на внутреннюю полированную поверхность быстровращающегося медного цилиндра. Капля растекалась по поверхности кристаллизатора и затвердевала в виде фольги толщиной 30-120 мкм. Скорость охлаждения расплава составляла порядка 10<sup>5</sup> К/с. Структура фольги исследовалась с помощью растрового электронного микроскопа и LEO 1455VP, оснащенного рентгеноспектральным микроанализатором, дифрактометра Rigaku Ultima IV. Микротвердость измерялась на ПМТ 3.

На дифрактограмме фольги сплава Ві<sub>20</sub>In<sub>28</sub>Sn<sub>52</sub> наблюдаются дифракционные линии (101, 111, 200, 220 и др соединения ВіІп (є-фаза) а также дифракционные линии (0001, 1011, 1120 и др.), принадлежащие соединению Sn<sub>4</sub>In (γ-фаза). Полученные данные позволяют утверждать, что быстрозатвердевшая фольга соединения Bi<sub>20</sub>In<sub>28</sub>Sn<sub>52</sub> двухфазна.

Изображение микроструктуры фольги, полученное на РЭМ в отраженных электронах, и распределение элементов вдоль линии сканирования представлено на рисунке 1. В микроструктуре фольги наблюдаются светлые и темные участки. Светлые участки, для которых отношение концентрации Ві и Іп близко к единице соответствует сечениям є-фазы. В темных участках концентрации висмута, индия и олова равны 6, 22 и 72 72 ат. %, соответственно. Это позволяет считать, что темные участки являются сечениями выделений  $\gamma$ -фазы, в которой часть атомов олова замещена атомами висмута.



Рисунок 1 – Микроструктура (а) и распределение элементов вдоль линии сканирования L-L<sup>1</sup>(б) быстрозатвердевшей фольги сплава Bi<sub>20</sub>In<sub>28</sub>Sn<sub>52</sub>

Металлографический анализ слоя фольги, прилегающего к кристаллизатору показал, что объемная доля є-фазы равна 0,38, а γ-фазы – 0,62. Распределение хорд случайных секущих є – фазы и γ-фазы приведено на рисунке 2. Наибольшая доля хорд сечений приходиться на размерную группу от 1 до 2 мкм. Наибольшие хорды сечений є-фазы и γ-фазы не превышают 6 и 9 мкм, соответственно. Средние сечения длин хорд для сечений є- и γ-фаз составляют 1,7 мкм и 2,6 мкм, соответственно. Удельная поверхность межфазных границ, рассчитанная из стереографического соотношения [3] равна 0,86 мкм<sup>-1</sup>.



Рисунок 2 – Распределение хорд случайных секущих ε-фазы (1) и γ-фазы (2)

Текстура фольги исследована методом обратных полюсных фигур. Значения полюсных плотностей дифракционных линий, рассчитанная по методу Харриса [4] для ε-фазы и γ-фазы, снятых на стороне фольги, прилегающей к кристаллизатору, приведены в таблице 1.

Таблица 1 – Полюсные плотности дифракционных линий ε- и γ-фаз фольги сплава Bi<sub>20</sub>In<sub>28</sub>Sn<sub>52</sub>

| BiIn (ε-φaзa) |           | Sn4In (γ-φa3a) |           |
|---------------|-----------|----------------|-----------|
| Дифрак-       | Полюс-    | Дифракци-      | Полюсная  |
| ционная       | ная плот- | онная линия    | плотность |
| линия         | ность     |                |           |
| 101           | 1,5       | 0001           | 4,5       |
| 111           | 0,9       | 1010           | 1,5       |
| 200           | 0,5       | 1011           | 0,5       |
| 220           | 1,4       | 1120           | 0,4       |
| 102           | 0,9       | 1121           | 0,4       |
| 201           | 1,3       | 1012           | 0,3       |
| 212           | 1,3       | 2021           | 0,3       |
| 113           | 0,2       | 1122           | 0,2       |



Рисунок 3 – Микротвердость быстрозатвердевшей фольги сплава Bi20In28Sn52

Наибольшее значение полюсной плотности γ-фазы принадлежит дифракционной линии 0001, т.е. наблюдается текстура (0001), при которой более 50 % площади зерен данной фазы ориентированно плоскостью (0001) параллельно поверхности фольги. Образование такой текстуры обусловлено тем, что плоскость (0001) является наиболее плотноупакованной [5]. В ε-фазе не наблюдается преимущественной ориентировки зерен. Микротвердость быстрозатвердевшей фольги исследуемого сплава с ростом времени выдержки при комнатной температуре монотонно увеличивается. Причина увеличения микротвердости быстрозатвердевшей фольги сплава Bi<sub>20</sub>In<sub>28</sub>Sn<sub>52</sub> заключается в улучшении структуры границ зерен и фаз благодаря диффузионным процессам, активно протекающим при комнатной температуре.

Таким образом, фольга сплава Bi<sub>20</sub>In<sub>28</sub>Sn<sub>52</sub>, полученная сверхбыстрым охлаждением из расплава, состоит из ε- и γ-фаз. Дисперсные частицы ε-фазы вкраплены в γ-фазе. Средние длины хорд случайных секущих на сечениях выделений ε- и γ-фаз равны 1,7 и 2,6 мкм, соответственно, а удельные поверхности межфазной границы – 0,86 мкм<sup>-1</sup>. Фаза In<sub>4</sub>Sn (γ-фаза) затвердеванием с образованием текстуры (0001). Стабилизация границ зерен и фаз приводит к росту микротвердости фольги при комнатной температуре.

## Литература

1. Шепелевич В.Г. Быстрозатвердевшие легкоплавкие сплавы /В.Г. Шепелевич. – Минск: БГУ, 2015. – 192 с.

2. Shepelevich V.G. The microstructure and microhardness of rapidly solidified foils of eutectic alloy In -47at. % Sn / V.G. Shepelevich, L.P. Scherbachenko // British Journal of Science. Education and Culture. -2015. - Vol.  $111 - N \ge 1(7) - Pp. 863-869$ .

3. Салтыков С.А. Стереометрическая металлография. М.: Металлургия, 1976. – 270 с.

4. Русаков А.А. Рентгенография металлов / А.А. Русаков. – М.: Металлургия, 1977. – 329 с.

5. Вассерман Г. Текстуры металлических материалов / Г. Вассерманн, И. Гревен. М.: Металлургия, 1969. – 655 с.

## УДК 535.37

## ВХОЖДЕНИЕ ИОНОВ ТУЛИЯ В КРИСТАЛЛИЧЕСКУЮ И СТЕКЛЯННУЮ ФАЗЫ В ОКСИФТОРИДНОЙ СТЕКЛОКЕРАМИКЕ Ясюкевич А.С.<sup>1</sup>, Кулешов Н.В.<sup>1</sup>, Рачковская Г.Е.<sup>2</sup>, Захаревич Г.Б.<sup>2</sup>, Трусова Е.Е.<sup>2</sup>

<sup>1</sup>НИЦ Оптических материалов и технологий БНТУ Минск, Республика Беларусь <sup>2</sup>Белорусский государственный технологический институт Минск, Республика Беларусь

Оксифторидные стекла, активированные ионами редкоземельных элементов (РЗЭ) представляют значительный интерес как прекурсоры для получения нанокерамических материалов, которые сочетают в себе низкую энергию фононов фторидов (CaF<sub>2</sub>, SrF<sub>2</sub>, PbF<sub>2</sub>, и др.) с химической и механической стабильностью оксидных матриц. В таких материалах редкоземельные ионы частично входят как в стеклянную, так и в керамическую фазы и есть возможность в некоторой степени формировать спектроскопические характеристики наностеклокерамики.

Для получения лазерной генерации в области спектра ≈1800-1900 нм привлекательными являются материалы, активированные ионами тулия. В данной работе мы изучали оксифторидные стекла состава 30 SiO<sub>2</sub>+10 GeO<sub>2</sub>+20 PbO+30 РbF<sub>2</sub>+10 CdF<sub>2</sub>+х Tm<sub>2</sub>O<sub>3</sub> (x = 0,1; 0,5; 1,0; 2,0) и стеклокерамики, полученные на основе этих стекол при вторичной термообработке при температуре 400 °C. Гидростатическим методом были определены плотности стекол и по их молярному составу были рассчитаны концентрации ионов тулия в исходных стеклах. В работе [1], где исследовались стекломатериалы близкого состава, было показано, что в результате вторичной термообработки при температуре 400-420 °С из исходного стекла образуется стеклокерамика с кристаллической фазой β-PbF<sub>2</sub>.

При изучении оксифторидных стекол основное внимание нами уделялось разработке спек-

троскопического метода определения относительного содержания ионов тулия в стеклянной и кристаллической фазах в оксифторидной стеклокерамике. Наш метод исследования основан на сравнении спектров поглощения стекол и стеклокерамик, полученных в результате термообработки. Спектры поглощения образцов в виде пластинок толщиной ≈1 мм регистрировались на спектрофотометре Cary 5 000 при комнатной температуре. Распределение кристаллической фазы в наших материалах после термообработки было неоднородным, что приводило к появлению непрозрачных областей в объеме образцов. В работе [2] были представлены спектры сечений поглощения Tm:PbF2. Спектры сечений поглощения исходных стекол и коэффициенты поглощения полученных стеклокерамик были определены нами. Спектр коэффициента поглощения стеклокерамики  $k_{abs}(\lambda)$  может быть представлен в виде

$$k_{abs}(\lambda) = \sigma_{abs}^{gl}(\lambda) N_{Tm} x_1 + \sigma_{abs}^{cr}(\lambda) N_{Tm} x_2, \quad (1)$$

где  $\sigma_{abs}^{gl}(\lambda)$ ,  $\sigma_{abs}^{cr}(\lambda)$  – сечения поглощения ионов тулия в стеклянной и кристаллической фазах, соответственно,  $N_{Tm}$  концентрация тулия в исходном образце стекла,  $x_1$  и  $x_2$  – параметры, которые характеризуют относительное содержание ионов тулия в стеклянной и кристаллической фазах в прозрачной области