РЕАКЦИЯ ЯКОРЯ СИНХРОННОЙ МАШИНЫ С ТАНГЕНЦИАЛЬНО НАМАГНИЧЕННЫМИ МАГНИТАМИ

Канд. техн. наук, доц. ШАФРАНСКИЙ В. И.

Белорусский национальный технический университет

Индуктивные сопротивления реакции якоря по продольной оси X_{ad} и поперечной оси X_{aq} , а также соотношение между ними оказывают большое влияние на технико-экономические показатели синхронной машины. В связи с этим исследование реакции якоря машины имеет научнопрактическое значение.

Ротор синхронной машины рассматриваемой конструкции (рис. 1), называемый ротором коллекторного типа [1], содержит 2p призматических магнитов 1 (p – число пар полюсов) и 2p сегментов 2 из магнитомягкого материала, расположенных на немагнитной втулке 3. На наружной поверхности ротора имеется бандаж 4 из немагнитного материала.

Puc. 1

Для исследования реакции якоря рассмотрим модели машины в пределах одного полюсного деления τ по продольной оси d (рис. 2) и поперечной оси q (рис. 3), где показаны пути вероятного замыкания магнитного потока рассеяния Φ_s и магнитного потока взаимоиндукции (реакции якоря) Φ_a , проникающего в ротор. (Параметры, относящиеся к осям q или d, имеют индекс d или q соответственно.)

Как видно из рис. 2а, магнитный поток взаимоиндукции Φ_{ad} , преодолев магнитное сопротивление немагнитного зазора:

$$\delta = \delta_{\rm B} + \delta_{\rm b},$$

где $\delta_{\rm B}$ – воздушный зазор; $\delta_{\rm d}$ – толщина бандажа,

в роторе разделяется на две части, каждая из которых встречает большое магнитное сопротивление самого магнита и двух стыков между магнитом 1 и сегментами 2. Поэтому значительная часть магнитного потока Φ_{ad} будет замыкаться по путям рассеяния (на рис. 2 не показано) ротора (через торцевые поверхности сегментов и их поверхности, прилегающие к втулке 3). Следовательно, если пренебречь магнитным сопротивлением стальных участков, то схема замещения магнитной цепи по продольной оси будет иметь вид, как на рис. 26. Здесь символом *R* обозначены магнитные сопротивления, обратно пропорциональные магнитным проводимостям Λ , т. е. $R = 1/\Lambda$: R_s – магнитное сопротивление рассеяния якоря; R_{δ} – то же немагнитного зазора; R_{σ} – то же рассеяния ротора; R_{M} – то же магнита; R_c – то же стыков между магнитом и сегментами.

Рис. 2. Модель синхронной машины для продольной оси: а – пути замыкания магнитного потока; б – схема замещения; в – кривые МДС и индукций

Магнитную проводимость Λ_s можно рассчитать, например, по [2], а магнитную проводимость Λ_{σ} – по [3]. Остальные магнитные проводимости, следовательно, и магнитные сопротивления определим ниже.

Рис. 3. Модель синхронной машины для поперечной оси: а - пути замыкания магнитного потока; б - схема замещения; в - кривые МДС и индукций

Как видно из рис. За, магнитный поток взаимоиндукции по поперечной оси Фаа в роторе замыкается по магнитомягкому сегменту 2, магнитным сопротивлением которого можно пренебречь, поэтому схема замещения магнитной цепи по поперечной цепи будет иметь вид, как на рис. 36.

На рис. 2в и 3в показаны синусоидальные кривые 1 МДС якоря F, кривые 2 действительной индукции В, построенные с учетом того, что магнитное сопротивление постоянного магнита соизмеримо с магнитным сопротивлением воздуха, а также кривые 3 первой гармоники индукции.

Определим вначале индуктивное сопротивление реакции якоря по продольной оси

$$X_{ad} = \frac{E_{ad}}{I_d},\tag{1}$$

где E_{ad} – ЭДС, индуктированная продольной составляющей магнитного потока взаимоиндукции Φ_{ad} ; I_d – продольная составляющая тока якоря.

ЭДС Е_{аd} индуктируется первой гармоникой продольного потока якоря Φ_{ad1} , поэтому [4]

$$E_{ad} = \sqrt{2\pi} w k_0 f \Phi_{ad1}, \qquad (2)$$

где f – частота; w, k_0 – число витков и обмоточный коэффициент соответственно.

Магнитный поток Φ_{ad1} определяется первой гармонической индукции B_{d1} [4]

$$\Phi_{ad1} = \frac{2}{\pi} \tau \, LB_{d1},\tag{3}$$

где *L* – активная длина машины.

Согласно теории рядов Фурье

$$B_{d1} = \frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} B_d(\gamma) \cos \gamma d\gamma , \qquad (4)$$

где γ – угловая координата.

Как видно из рис. 2в, в пределах интегрирования $\gamma = 0...\pi/2$:

$$B_d(\gamma) = B_d \cos \gamma$$
 при $0 < \gamma < \alpha_k \frac{\pi}{2}$;
 $B_d(\gamma) = 0$ при $\alpha_k \frac{\pi}{2} < \gamma < \frac{\pi}{2}$,

где $\alpha_k = \frac{b_c}{\tau}$ – конструктивный коэффициент полюсной дуги; b_c – длина дуги сегмента 2.

Следовательно:

$$B_{d1} = \frac{4}{\pi} \int_{0}^{\alpha_{k} \frac{\pi}{2}} B_{d} \cos^{2} \gamma d\gamma = \frac{4B_{d}}{\pi} \int_{0}^{\alpha_{k} \frac{\pi}{2}} \frac{1}{2} (1 + \cos 2\gamma) d\gamma =$$
$$= \frac{2B_{d}}{\pi} (\gamma + \frac{1}{2} \sin 2\gamma) \bigg|_{0}^{\alpha_{k} \frac{\pi}{2}} = \frac{B_{d}}{\pi} (\alpha_{k} \pi + \sin \alpha_{k} \pi) = B_{d} k_{d}, \qquad (5)$$

где $k_d = \frac{B_{d1}}{B_d} = \frac{\alpha_k \pi + \sin \alpha_k \pi}{\pi}$ – коэффициент формы кривой индукции по

продольной оси.

На основании (1)...(3) и (5)

$$X_{ad} = \frac{2\sqrt{2}wk_0 ft LB_d k_d}{I_d}.$$
 (6)

Продольный магнитный поток взаимоиндукции, созданный обмоткой якоря, определяется площадью, ограниченной кривой 2 действительной кривой индукции (рис. 2в) и осью абсцисс:

$$\Phi_{ad} = 2L \int_{0}^{\alpha_k \frac{\pi}{2}} B_d \cos \frac{\pi}{\tau} x dx = \frac{2}{\pi} L \tau B_d \sin \alpha_k \frac{\pi}{2} = \frac{2}{\pi} L \tau B_d k_{\Phi d}, \qquad (7)$$

где $k_{\Phi d} = \sin \alpha_k \frac{\pi}{2}$ – коэффициент формы кривой магнитного потока по продольной оси; $x = \frac{\tau}{\pi} \gamma$ – координата в единицах длины.

Этот магнитный поток можно выразить также следующим образом:

$$\Phi_{ad} = \Lambda_{ad} F_d \,, \tag{8}$$

где Λ_{ad} – полная магнитная проводимость по продольной оси на пару полюсов:

$$F_d = \frac{2\sqrt{2}mwk_0 I_d}{\pi p} - MДС \text{ на пару полюсов по продольной оси [4], (9)}$$

где т – число фаз обмотки якоря.

Из равенства (7) и (8) с учетом (9) находим

$$B_d = \frac{\sqrt{2mwk_0I_d}}{pL\tau k_{\Phi d}} \Lambda_{ad} \,. \tag{10}$$

Подставим это значение B_d в (6) и получим

$$X_{ad} = \frac{4mf(wk_o)^2 k_d}{pk_{\Phi d}} \Lambda_{ad} .$$
(11)

Магнитная проводимость $\Lambda_{ad} = \frac{1}{R_{ad}}$, а магнитное сопротивление R_{ad} –

это сопротивление схемы на рис. 26 относительно точек d и c

$$R_{ad} = R_{\delta d} + \frac{R_{\sigma} R_{MC}}{2(R_{\sigma} + R_{MC})} = \frac{2R_{\delta d} (R_{\sigma} + R_{MC}) + R_{\sigma} R_{MC}}{2(R_{\sigma} + R_{MC})},$$
(12)

где $R_{\rm MC} = R_{\rm M} + R_{\rm c}$.

Если пользоваться магнитными проводимостями, то

$$R_{ad} = \frac{1}{\Lambda_{\delta d}} + \frac{1}{2(\Lambda_{\sigma} + \Lambda_{\rm MC})} = \frac{\Lambda_{\delta d} + 2(\Lambda_{\sigma} + \Lambda_{\rm MC})}{2\Lambda_{\delta d}(\Lambda_{\sigma} + \Lambda_{\rm MC})},$$
 (13)

где Λ_{σ} – проводимость рассеяния торцевых и боковых поверхностей ротора.

Следовательно:

$$\Lambda_{ad} = \frac{2\Lambda_{\delta d}(\Lambda_{\sigma} + \Lambda_{\rm MC})}{\Lambda_{\delta d} + 2(\Lambda_{\sigma} + \Lambda_{\rm MC})}.$$
 (14)

Магнитная проводимость немагнитного зазора

25

$$\Lambda_{\delta d} = \frac{\Phi_{ad}}{F_{\delta d}},\tag{15}$$

где $F_{\delta d} = \frac{2\delta k_{\delta}B_d}{\mu_o}$ – МДС немагнитного зазора на пару полюсов; k_{δ} – ко-

эффициент, учитывающий зубчатое строение статора; µ₀ – магнитная проницаемость воздуха.

Подставив сюда значение Φ_{ad} из (7), получим

$$\Lambda_{\delta d} = \frac{\mu_o L \tau k_{\Phi d}}{\pi \delta k_\delta} \,. \tag{16}$$

МДС, приложенная к магниту и стыкам:

$$F_{dMc} = H_c 2\delta_c + H_M h_M, \qquad (17)$$

где H_c, H_м – напряженность стыка и напряженность магнита соответственно; δ_c – длина воздушного зазора в стыке; h_{M} – высота (толщина) магнита (размер в тангенциальном направлении).

Напряженности стыка и магнита:

$$H_{c} = \frac{B_{c}}{\mu_{o}} = \frac{\Phi_{adM}}{S_{M}\mu_{o}} = \frac{\Phi_{adM}}{b_{M}\mu_{o}L};$$

$$\mathbf{H}_{\mathbf{M}} = \frac{B_{\mathbf{M}}}{\mu_{\mathbf{M}}} = \frac{\Phi_{ad\mathbf{M}}}{\mu_{\mathbf{M}}Lb_{\mathbf{M}}},$$

где $S_{\rm M} = b_{\rm M}L$ – площадь магнита; $b_{\rm M}$ – ширина магнита (размер в радиальном направлении), $\mu_{\rm M} = \frac{B_r}{{\rm H}_{\rm cB}}$ – магнитная проницаемость магнита; B_r – остаточная индукция магнита; ${\rm H}_{\rm cB}$ – коэрцитивная сила магнита по индукции.

Следовательно:

$$F_{dMC} = \frac{\Phi_{adM}}{Lb_{M}} \left(\frac{2\delta_{c}}{\mu_{o}} + \frac{h_{M}}{\mu_{M}} \right).$$
(18)

Магнитная проводимость магнита и стыков

:1

$$\Lambda_{\rm MC} = \frac{\Phi_{adM}}{F_{dMC}} = \frac{Lb_{\rm M}}{2\delta_{\rm c}/\mu_{\rm o} + h_{\rm M}/\mu_{\rm M}} \,. \tag{19}$$

Индуктивное сопротивление реакции якоря по поперечной оси можно представить выражением, аналогичным (11):

$$X_{aq} = \frac{4m(wk_{o})k_{q}}{pk_{\Phi q}}.$$
(20)

Коэффициент формы кривой индукции по поперечной k_q можно найти, определив ее первую гармонику B_{q1} по кривой 2 на рис. 3в:

$$B_{q1} = \frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} B_q(\gamma) \cos \gamma d\gamma.$$

Как видно из рис. Зв:

$$B_q(\gamma) = 0$$
 при $0 < \gamma < (1 - \alpha_k) \frac{\pi}{2};$

$$B_q(\gamma) = B_q \cos \gamma$$
 при $(1 - \alpha_k) \frac{\pi}{2} < \gamma < \frac{\pi}{2}$,

поэтому

$$B_{q1} = \frac{4}{\pi} \int_{(1-\alpha_k)\frac{\pi}{2}}^{\frac{\pi}{2}} B_q(\gamma) \cos^2 \gamma d\gamma = \frac{2B_q}{\pi} (\gamma + \frac{1}{2}\sin 2\gamma) \bigg|_{(1-\alpha_k)\frac{\pi}{2}}^{\frac{\pi}{2}} = B_q(\alpha_k - \frac{1}{\pi}\sin \alpha_k \pi) = B_q k_q,$$

где $k_q = \frac{B_{q1}}{B_q} = \frac{\alpha_k \pi - \sin \alpha_k \pi}{\pi}$.

Коэффициент формы кривой магнитного потока по поперечной оси k_{Φ_q} найдем, определив величину этого потока по кривой 2 на рис. 3в:

$$\Phi_{aq} = 2L \int_{(1-\alpha_k)\frac{\tau}{2}}^{\frac{\tau}{2}} B_q(\gamma) \cos\frac{\pi}{\tau} x dx = \frac{2}{\pi} L\tau B_q \sin\frac{\pi}{\tau} x \bigg|_{(1-\alpha_k)\frac{\pi}{2}}^{\frac{\pi}{2}} =$$
$$= \frac{2}{\pi} L\tau B_q [\sin\frac{\pi}{2} - \sin\frac{\pi}{2}(1-\alpha_k)] = \frac{2}{\pi} L\tau B_q k_{\Phi q}, \qquad (21)$$

где $k_{\Phi q} = 1 - \cos \alpha_k \frac{\pi}{2}$.

Магнитная проводимость немагнитного зазора по поперечной оси

$$\Lambda_{aq} = \frac{\Phi_{aq}}{F_{\delta q}} = \frac{\mu_o L \tau k_{\Phi q}}{\pi \delta k_\delta}, \qquad (22)$$

где $F_{\delta q} = \frac{2\delta k_{\delta} B_q}{\mu_0}$ – МДС воздушного зазора на пару полюсов.

выводы

1. В магнитоэлектрических синхронных машинах с тангенциально намагниченными магнитами $X_{aq} \ge X_{ad}$, что не характерно для машин с электромагнитным возбуждением. 2. На магнитные проводимости и индуктивные сопротивления реакции якоря по продольной и поперечной осям сильное влияние оказывает размер магнита в тангенциальном направлении, определяющий конструктивный коэффициент полюсной дуги.

3. Магнитная проводимость рассеяния ротора оказывает сильное влияние на индуктивное сопротивление взаимоиндукции по продольной оси.

ЛИТЕРАТУРА

1. Балагуров В. А., Галтеев Ф. Ф. Электрические генераторы с постоянными магнитами. – М., 1988. – 280 с.

2. Проектирование электрических машин / Подред. И. П. Копылова. – М., 1980. – 495 с.

3. Постоянные магниты / Под ред. Ю. М. Пятина. - М., 1980. - 486 с.

4. Вольдек А. И. Электрические машины. – Л., 1978. – 832 с.

Представлена кафедрой электроснабжения

Поступила 12.12.2002

УДК 62-85:621.313.333

ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ С СИНХРОНИЗАЦИЕЙ ПО ТОКУ КАК ЗВЕНО СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ

Канд. техн. наук, доц. КОВАЛЬ А. С., инж. СКАРЫНО Б. Б.

Белорусско-Российский университет

Электроприводы переменного тока на основе тиристорных преобразователей напряжения (ТПН) позволяют наряду с формированием пускотормозных режимов обеспечивать и режим энергосбережения при недогруженном двигателе.

Однако, несмотря на простоту силовой схемы ТПН, в процессе функционирования таких систем возникают трудности. Одна из них связана с колебаниями момента двигателя при работе на подсинхронных скоростях [1], когда и обеспечивается эффект энергосбережения за счет уменьшения напряжения на двигателе при использовании ТПН с синхронизацией по напряжению в приводе без обратной связи по скорости. В этом случае для устойчивой работы необходимо применять ТПН с синхронизацией по току [1, 2]. Возникает задача представления ТПН с синхронизацией по току в виде звена системы автоматического регулирования, что позволяет подходить к проектированию систем энергосберегающего параметрического асинхронного электропривода. Рассмотрим подход к решению такой задачи при работе асинхронного двигателя на участке механической характе-