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Binary decision diagram. Binary decision diagram (BDD) is a well-known and widely used graph 

model (data structure) of Boolean functions [1]. In work [2] Randal Bryant proposed a reduced ordered 

binary decision diagram (ROBDD) that emphasizes aspects of variables ordering and diagram size 

reduction. It lies in the basis of digital system modelling, synthesis and verification tools. It is canonical 

for a particular function and variable ordered. ROBDDs constitute a basis of developing efficient digital 

system modelling, synthesis, optimization and verification tools. Figure 1a shows a basic fragment of 

BDD constructed on the Shannon expansion of Boolean function f(x) of vector argument x = (x1,…,xn):  
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where ,  and  are Boolean inversion, conjunction and disjunction; fxi=0 and fxi=1 are residual functions 

or negative and positive cofactors respectively. The fragment consists of a vertex labeled by variable xi 

that has two outgoing edges low and high directed to sub-diagrams, which represent the negative and 

positive cofactors.  

 

 

a) 

 

b) 

Figure 1 – Basic fragment of a) binary decision diagram BDD and b) if-decision diagram IFD 

 

If-decision diagram. Works [3, 4] originally propose the concept of if-decision diagram derived 

from the theory of incompletely specified Boolean functions [5-7]. Let B = {0, 1} and M = {0, 1, dc} 

where 0 and 1 are Boolean values and dc is a don’t care value. An incompletely specified Boolean 

function (x) of vector Boolean variable x = (x1,…,xn) is a mapping : BnM. In , value dcM can be 

arbitrarily replaced by 0 or 1. Function (x) can be represented by three sets: on-set ON where (x) = 1, 

off-set OFF where (x) = 0, and don’t care set DC where (x) = dc. Three Boolean characteristic 

functions describe the sets: on(x), off(x) and dc(x). We call function f(x) = on(x) a value function, and 

call function d(x) = dc(x) a domain function. Pair (x) = (f(x) | d(x)) describes the incompletely 

specified function. In the pair, one may replace f(x) by other function v(x) of slice (2) without changing 

(x). 
ononon dfvdf )()(   (2) 

Since the functions of slice (1) can produce digital circuits of various time and area, we introduce 

an operation v(x) = min (f(x) | d(x)) to select a best function of the slice [3, 5]. The theorem as follows 

generalizes the Shannon expansion. Let min(f | d) and min(f | d) be residual functions (cofactors) of 

function f on function d. 
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Theorem. Expansion (3) holds for arbitrarily Boolean functions f(x) and d(x). 

)|min()|min( dfddfdf   (3) 

Expansion (3) is capable of efficiently solving many optimization problems of digital system 

design. The if-decision diagram (IFD) [3] represents expansion (3) by a node (Figure 1b) of directed 

acyclic graph. Its three descendants are if-node d, high-node g = min(f | d) and low-node h = min(f | d), 

which form a node notation v = ifd(d, g, h). A labeled terminal node is Boolean constant 0, constant 1, 

variable xi or its negation xi. If node v uses complement of d, g and h, then we write v = ifd(d, g, h). 

In this case, complement edges connect v with d, g and h. We represent normal edges by solid lines, and 

represent complement edges by dash lines. 

IFD is a promising generalization of BDD. It has three outgoing edges instead of two in BDD; 

therefore, its capabilities for parallelization are larger. In our work, we use IFD for the modelling, 

optimization and parallelization [4, 8] of digital circuits at logic level, as well as for the synthesis of 

reversible circuits for quantum implementation.  

Reversible and quantum circuits. Synthesis of reversible and quantum logic is an intensely studied 

topic [9-20]. A logic function is reversible if it maps each input assignment to a unique output assignment. 

Such a function must have the same number of input and output variables. Fan-out and feedback are not 

allowed in the reversible logic. A circuit realizing a reversible function is constructed of lines and 

reversible gates. The reversible gate has the form of G(T, C), where T ⊂ X is a target line, C ⊂ X is a set 

of control lines (C ∩ T = ∅), and X is a set of variables. The gate operation is applied to the target lines 

if all control lines meet true conditions. 

Several reversible gate libraries are available. The NCT library [10] includes such fundamental 

reversible gates as NOT gate, CNOT (Feynman) gate with one control line, and C2NOT (Toffoli) gate 

with two control lines. Figure 2a depicts the fundamental gates of the NCT library and the functions 

implemented by the gates. Syntactically the gate (target line) is represented by symbol ⊕, and its control 

lines are represented by symbol . The Toffoli gate implements a Boolean function that maps the three 

inputs to the three outputs: TG(L, C0, C1) = (L(C0  C1), C0, C1) where  is Boolean exclusive or; L is 

the gate input at target line; C0, C1 are conditions at two control lines. The gate may have one control 

line, or may have no control lines. Therefore, the reversible circuit describes the behavior as a 

superposition of three Boolean functions, ,  and . If the Toffoli gate has one control line, then 

TG(L, C0) = (LC0, C0). Boolean inversion (not) of L is realized by a gate without control lines: 

TG(L) = (L). 

 

 
a) 

 
b) 

 
x NOT(x) V(x) V+(x) 

0 1 v0 v1 
v0 v1 1 0 
1 0 v1 v0 

v1 v0 0 1 

c) 

Figure 2 – Reversible gates of a) NCT library, quantum gates of b) NCV-|v1> library and c) operation 

of quantum gates 

 

Quantum circuits carry out computations by manipulating quantum states of qubits. The qubit 

represents the state as  = 0 + 1 where  and  are complex numbers such that 2 + 2 = 1. 

Quantum logic gates are necessarily reversible in nature. A quantum circuit is a cascade of quantum 
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gates. Several quantum gate libraries are available in the literature. The NCV library [10] is the most 

commonly used for generating quantum circuits. Work [15] introduced the extended NCV-|v1> quantum 

library. The library includes gates whose control lines may be sensitive to non-Boolean values. It uses 

qudits instead of qubits and considers a 4-level (0, v0, 1 and v1) quantum system. Figure 2b depicts the 

quantum gates of the NCV-|v1> library: NOT gate, controlled CNOT gate (both are similar to the 

corresponding reversible gates), not controlled and controlled V gate, and not controlled and controlled 

V+ gate. Figure 2c describes operation of the gates. 

Works [14, 16, 20] propose a technique of synthesizing a reversible circuit from a function given 

as BDD. The technique substitutes all nodes of the BDD with cascades of reversible gates. The size of 

reversible circuit directly depends on the BDD size; therefore, the circuit size can grow exponentially 

over the BDD inputs count.  

Since BDD is a special case of IFD, IFDs provide more universal and compact representation of 

Boolean functions against BDDs. Having an IFD, the traversal of its nodes and the substitution of each 

node by a cascade of reversible gates produce an appropriate reversible circuit. The preferable cascade 

of gates depends on the successors of the node. Moreover, choosing the appropriate cascade depends on 

the fan-out of successor nodes.  

Table 1 provides the cascades of reversible gates for all possible scenarios of IFD node. The first 

row of the table describes a node that represents function f = ifd(d, g, h). When both nodes g and h have 

the fan-out of 1, we may overwrite the inputs of corresponding circuit lines and realize node f by cascade 

a) or cascade b). The first cascade consists of one controlled CNOT gate and one Toffoli gate, while the 

second cascade consists of NOT, CNOT and Toffoli gates. When only node h has the fan-out of 1, we 

realize node f by cascade c) with one ancillary line, two CNOT gates and one Toffoli gate. When only g 

has the fan-out of 1, we realize node f by cascade d) of one ancillary line, two CNOT and one Toffoli 

gates. When nodes g and h have the fan-out larger than 1, the overwriting of all cascade inputs is 

forbidden, therefore we introduce an ancillary line 0 and realize node f by the most expensive cascade e) 

consisting of one CNOT and two Toffoli gates. 

The second row of Table 1 describes a node that models function f = xor(d, g). In the node view, a 

dash line represents complementation. When node g or node d has the fan-out of 1, we may realize node 

f by cascade a) or cascade b) respectively of only one controlled CNOT gate. When both d and g have 

the fan-out larger than 1, we introduce ancillary line 0 and realize xor by the cascade c) consisting of two 

CNOT gates. 

The third row describes a node that represents function f = or(d, h). When both nodes g and d have 

the fan-out of 1, we may realize node f by cascade a) of two NOT and one Toffoli gates. When the fan-

out of both nodes g and d exceeds 1, we can realize node f by cascade b) or cascade c). Cascade b) 

includes four NOT gates and one Toffoli gate, while cascade c) includes two controlled CNOT gates and 

one Toffoli gate. Cascades a), b) and c) use one ancillary line. 

The fourth row describes a node that models function f = or(d, g). When node g has the fan-out 

of 1, we may realize node f by cascade a) of one NOT gate and one Toffoli gate. When the fan-out of 

both nodes g and d is equal or larger than 1, we can realize node f by cascade b) of two NOT and one 

Toffoli gates. When the fan-out of both nodes g and d exceeds 1, we can use cascade c) of one NOT, one 

CNOT and one Toffoli gates. All cascades a), b) and c) use an ancillary line. 

The fifth row describes a node that represents function f = and(d, g). At any fan-out of nodes d and 

g, node f can be realized by cascade a) of one ancillary line and one Toffoli gate. 

The sixth row describes a node that models function f = and(d, h). When node d has the fan-out 

of 1, we may realize node f by cascade a) of one NOT gate and one Toffoli gate. When the fan-out of 

both nodes d and g is equal or larger than 1, we can realize node f by cascade b) of two NOT and one 

Toffoli gates. Cascades a) and b) use an ancillary line. 

Similar cascades realize IFD nodes with complement edges. Again, we construct cascades for all 

possible scenarios of an IFD node. 
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Table 1. Mapping IFD nodes to cascades of reversible gates 

N IFD node Competitive cascades of reversible gates 

1 

 

a)             b)        c)   

d)      e)  

2 

 
a)                   b)               c)  

3 

 
a)         b)        c)  

4 

 
a)         b)       c)  

5 

 
a)  

6 

 
a)            b)  

 

Figure 3 illustrates the technique of transforming a reduced ordered BDD (representing an example 

Boolean function, Figure 3a) to a functionally equivalent IFD, and further mapping the IFD to a reversible 

circuit realization. The BDD consists of six nonterminal nodes labeled by variables x0, x1, x2 and x3, and 

two terminal nodes labeled by 0 and 1. The direct transition from ROBDD to IFD yields the if-decision 

diagram that consists of five nonterminal nodes. Additionally, we have developed an optimization 

technique that produces the IFD depicted in Figure 3b. The IFD consists of three nonterminal nodes, two 

nodes less. Figure 3c depicts the reversible circuit obtained during the traversal of the optimized IFD and 

mapping its nodes to appropriate cascades of reversible gates. The vertical dash lines indicate the gates 

that realize each of three nonterminal nodes of the IFD. The circuit consists of five lines, two NOT gates, 

two CNOT gates, and two Toffoli gates. If we have generated a circuit directly from the ROBDD, the 

circuit size would be larger than those one shown in Figure 3c. 
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a) 

 
b) 

 
 

c) 

Figure 3 – An example of transforming a) ROBDD to b) IFD and mapping IFD to c) reversible circuit 

 

 

Conclusion. Recently reversible and quantum computation has become an intensively studied 

topic. All operations in quantum circuits are reversible in nature. The literature describes several 

approaches for synthesis of reversible circuits. The binary decision diagram based synthesis has shown 

the improvement of reversible circuits parameters. In past years, we have done research that extends the 

binary decision diagrams to if-decision diagrams, which increase the modelling power of logic functions. 

In this paper, we have developed an approach for modelling the reversible circuits by if-decision 

diagrams. We have introduced rules, which put cascades of reversible gates in accordance to if-diagram 

nodes of various types. We have given an example of transforming a binary decision diagram to an if-

decision diagram, and an example of further mapping the if-decision diagram to a small size reversible 

circuit. 
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